Cargando…
Voltage dependence of synaptic plasticity is essential for rate based learning with short stimuli
In computational neuroscience, synaptic plasticity rules are often formulated in terms of firing rates. The predominant description of in vivo neuronal activity, however, is the instantaneous rate (or spiking probability). In this article we resolve this discrepancy by showing that fluctuations of t...
Autores principales: | Weissenberger, Felix, Gauy, Marcelo Matheus, Lengler, Johannes, Meier, Florian, Steger, Angelika |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5854671/ https://www.ncbi.nlm.nih.gov/pubmed/29545553 http://dx.doi.org/10.1038/s41598-018-22781-0 |
Ejemplares similares
-
A Hippocampal Model for Behavioral Time Acquisition and Fast Bidirectional Replay of Spatio-Temporal Memory Sequences
por: Matheus Gauy, Marcelo, et al.
Publicado: (2018) -
A Model of Fast Hebbian Spike Latency Normalization
por: Einarsson, Hafsteinn, et al.
Publicado: (2017) -
Reliable Neuronal Systems: The Importance of Heterogeneity
por: Lengler, Johannes, et al.
Publicado: (2013) -
A high-capacity model for one shot association learning in the brain
por: Einarsson, Hafsteinn, et al.
Publicado: (2014) -
Compensating Inhomogeneities of Neuromorphic VLSI Devices Via Short-Term Synaptic Plasticity
por: Bill, Johannes, et al.
Publicado: (2010)