Cargando…
Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors
Getting a good feature representation of data is paramount for Human Activity Recognition (HAR) using wearable sensors. An increasing number of feature learning approaches—in particular deep-learning based—have been proposed to extract an effective feature representation by analyzing large amounts o...
Autores principales: | Li, Frédéric, Shirahama, Kimiaki, Nisar, Muhammad Adeel, Köping, Lukas, Grzegorzek, Marcin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5855052/ https://www.ncbi.nlm.nih.gov/pubmed/29495310 http://dx.doi.org/10.3390/s18020679 |
Ejemplares similares
-
Rank Pooling Approach for Wearable Sensor-Based ADLs Recognition
por: Nisar, Muhammad Adeel, et al.
Publicado: (2020) -
A Hierarchical Multitask Learning Approach for the Recognition of Activities of Daily Living Using Data from Wearable Sensors
por: Nisar, Muhammad Adeel, et al.
Publicado: (2023) -
Deep Transfer Learning for Time Series Data Based on Sensor Modality Classification
por: Li, Frédéric, et al.
Publicado: (2020) -
Sleep Stage Classification in Children Using Self-Attention and Gaussian Noise Data Augmentation
por: Huang, Xinyu, et al.
Publicado: (2023) -
SenseHunger: Machine Learning Approach to Hunger Detection Using Wearable Sensors
por: Irshad, Muhammad Tausif, et al.
Publicado: (2022)