Cargando…
New Fault Recognition Method for Rotary Machinery Based on Information Entropy and a Probabilistic Neural Network
Feature recognition and fault diagnosis plays an important role in equipment safety and stable operation of rotating machinery. In order to cope with the complexity problem of the vibration signal of rotating machinery, a feature fusion model based on information entropy and probabilistic neural net...
Autores principales: | Jiang, Quansheng, Shen, Yehu, Li, Hua, Xu, Fengyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5855057/ https://www.ncbi.nlm.nih.gov/pubmed/29364856 http://dx.doi.org/10.3390/s18020337 |
Ejemplares similares
-
Comparison of Novelty Detection Methods for Detection of Various Rotary Machinery Faults
por: Górski, Jakub, et al.
Publicado: (2021) -
Fault Diagnosis for Rotating Machinery Using Multiscale Permutation Entropy and Convolutional Neural Networks
por: Li, Hongmei, et al.
Publicado: (2020) -
Intelligent Fault Diagnosis of Rotary Machinery by Convolutional Neural Network with Automatic Hyper-Parameters Tuning Using Bayesian Optimization
por: Kolar, Davor, et al.
Publicado: (2021) -
Rolling Bearing Fault Diagnosis Based on Refined Composite Multi-Scale Approximate Entropy and Optimized Probabilistic Neural Network
por: Ma, Jianpeng, et al.
Publicado: (2021) -
A Novel Fault Diagnosis Method for Rotating Machinery Based on a Convolutional Neural Network
por: Guo, Sheng, et al.
Publicado: (2018)