Cargando…
Ship Detection in Gaofen-3 SAR Images Based on Sea Clutter Distribution Analysis and Deep Convolutional Neural Network
Target detection is one of the important applications in the field of remote sensing. The Gaofen-3 (GF-3) Synthetic Aperture Radar (SAR) satellite launched by China is a powerful tool for maritime monitoring. This work aims at detecting ships in GF-3 SAR images using a new land masking strategy, the...
Autores principales: | An, Quanzhi, Pan, Zongxu, You, Hongjian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5855143/ https://www.ncbi.nlm.nih.gov/pubmed/29364194 http://dx.doi.org/10.3390/s18020334 |
Ejemplares similares
-
Flood Detection in Gaofen-3 SAR Images via Fully Convolutional Networks
por: Kang, Wenchao, et al.
Publicado: (2018) -
Research on Strong Clutter Suppression for Gaofen-3 Dual-Channel SAR/GMTI
por: Zheng, Mingjie, et al.
Publicado: (2018) -
Fast Vessel Detection in Gaofen-3 SAR Images with Ultrafine Strip-Map Mode
por: Pan, Zongxu, et al.
Publicado: (2017) -
Mapping and Discriminating Rural Settlements Using Gaofen-2 Images and a Fully Convolutional Network
por: Ye, Ziran, et al.
Publicado: (2020) -
Sea Clutter Reduction and Target Enhancement by Neural Networks in a Marine Radar System
por: Vicen-Bueno, Raúl, et al.
Publicado: (2009)