Cargando…
Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter
This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis di...
Autores principales: | Gao, Bingbing, Hu, Gaoge, Gao, Shesheng, Zhong, Yongmin, Gu, Chengfan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5855193/ https://www.ncbi.nlm.nih.gov/pubmed/29415509 http://dx.doi.org/10.3390/s18020488 |
Ejemplares similares
-
Adaptive Square-Root Unscented Particle Filtering Algorithm for Dynamic Navigation
por: Wei, Wenhui, et al.
Publicado: (2018) -
Random Weighting, Strong Tracking, and Unscented Kalman Filter for Soft Tissue Characterization
por: Shin, Jaehyun, et al.
Publicado: (2018) -
Multi-Sensor Combined Measurement While Drilling Based on the Improved Adaptive Fading Square Root Unscented Kalman Filter
por: Yang, Yi, et al.
Publicado: (2020) -
Adaptive Robust Unscented Kalman Filter via Fading Factor and Maximum Correntropy Criterion
por: Deng, Zhihong, et al.
Publicado: (2018) -
Achieving Adaptive Visual Multi-Object Tracking with Unscented Kalman Filter
por: Zhang, Guowei, et al.
Publicado: (2022)