Cargando…
The Prediction of the Gas Utilization Ratio Based on TS Fuzzy Neural Network and Particle Swarm Optimization
Gas utilization ratio (GUR) is an important indicator that is used to evaluate the energy consumption of blast furnaces (BFs). Currently, the existing methods cannot predict the GUR accurately. In this paper, we present a novel data-driven model for predicting the GUR. The proposed approach utilized...
Autores principales: | Zhang, Sen, Jiang, Haihe, Yin, Yixin, Xiao, Wendong, Zhao, Baoyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5855514/ https://www.ncbi.nlm.nih.gov/pubmed/29461469 http://dx.doi.org/10.3390/s18020625 |
Ejemplares similares
-
A Novel Online Sequential Extreme Learning Machine for Gas Utilization Ratio Prediction in Blast Furnaces
por: Li, Yanjiao, et al.
Publicado: (2017) -
Fuzzy dynamic parameter adaptation in the bird swarm algorithm for neural network optimization
por: Melin, Patricia, et al.
Publicado: (2022) -
Particle swarm optimization of partitions and fuzzy order for fuzzy time series forecasting of COVID-19
por: Kumar, Naresh, et al.
Publicado: (2021) -
A Distributed Particle-Swarm-Optimization-Based Fuzzy Clustering Protocol for Wireless Sensor Networks
por: Wang, Chuhang
Publicado: (2023) -
Development of an Artificial Neural Network Utilizing Particle Swarm Optimization for Modeling the Spray Drying of Coconut Milk
por: Ming, Jesse Lee Kar, et al.
Publicado: (2021)