Cargando…

Lasiodiplodia theobromae as a Producer of Biotechnologically Relevant Enzymes

Phytopathogenic fungi are known to produce several types of enzymes usually involved in plant cell wall degradation and pathogenesis. The increasing of global temperature may induce fungi, such as Lasiodiplodia theobromae (L. theobromae), to alter its behavior. Nonetheless, there is only limited inf...

Descripción completa

Detalles Bibliográficos
Autores principales: Félix, Carina, Libório, Sofia, Nunes, Mariana, Félix, Rafael, Duarte, Ana S., Alves, Artur, Esteves, Ana C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5855540/
https://www.ncbi.nlm.nih.gov/pubmed/29360737
http://dx.doi.org/10.3390/ijms19020029
Descripción
Sumario:Phytopathogenic fungi are known to produce several types of enzymes usually involved in plant cell wall degradation and pathogenesis. The increasing of global temperature may induce fungi, such as Lasiodiplodia theobromae (L. theobromae), to alter its behavior. Nonetheless, there is only limited information regarding the effect of temperature on L. theobromae production of enzymes. The need for new, thermostable enzymes, that are biotechnologically relevant, led us to investigate the effect of temperature on the production of several extracellular enzymatic activities by different L. theobromae strains. Fungi were grown at 25 °C, 30 °C and 37 °C and the enzymatic activities were detected by plate assays, quantified by spectrophotometric methods and characterized by zymography. The thermostability (25–80 °C) of the enzymes produced was also tested. Strains CAA019, CBS339.90, LA-SOL3, LA-SV1 and LA-MA-1 produced amylases, gelatinases, caseinases, cellulases, lipases, laccases, xylanases, pectinases and pectin liases. Temperature modulated the expression of the enzymes, and this effect was more visible when fungi were grown at 37 °C than at lower temperatures. Contrary to proteolytic and endoglucanolytic activities, whose highest activities were detected when fungi were grown at 30 °C, lipolytic activity was not detected at this growth temperature. Profiles of proteases and endoglucanases of fungi grown at different temperatures were characterized by zymography. Enzymes were shown to be more thermostable when fungi were grown at 30 °C. Proteases were active up to 50 °C and endoglucanases up to 70 °C. Lipases were the least stable, with activities detected up to 45 °C. The enzymatic profiles detected for L. theobromae strains tested showed to be temperature and strain-dependent, making this species a good target for biotechnological applications.