Cargando…
Adaptive Correlation Model for Visual Tracking Using Keypoints Matching and Deep Convolutional Feature
Although correlation filter (CF)-based visual tracking algorithms have achieved appealing results, there are still some problems to be solved. When the target object goes through long-term occlusions or scale variation, the correlation model used in existing CF-based algorithms will inevitably learn...
Autores principales: | Li, Yuankun, Xu, Tingfa, Deng, Honggao, Shi, Guokai, Guo, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5855939/ https://www.ncbi.nlm.nih.gov/pubmed/29473840 http://dx.doi.org/10.3390/s18020653 |
Ejemplares similares
-
Consistently Sampled Correlation Filters with Space Anisotropic Regularization for Visual Tracking
por: Shi, Guokai, et al.
Publicado: (2017) -
New Keypoint Matching Method Using Local Convolutional Features for Power Transmission Line Icing Monitoring
por: Guo, Qiangliang, et al.
Publicado: (2018) -
Alleviate Similar Object in Visual Tracking via Online Learning Interference-Target Spatial Structure
por: Shi, Guokai, et al.
Publicado: (2017) -
Multi-View Structural Local Subspace Tracking
por: Guo, Jie, et al.
Publicado: (2017) -
An Improved Randomized Local Binary Features for Keypoints Recognition
por: Zhang, Jinming, et al.
Publicado: (2018)