Cargando…
On the Comparison of Wearable Sensor Data Fusion to a Single Sensor Machine Learning Technique in Fall Detection
In the context of the ageing global population, researchers and scientists have tried to find solutions to many challenges faced by older people. Falls, the leading cause of injury among elderly, are usually severe enough to require immediate medical attention; thus, their detection is of primary im...
Autores principales: | Tsinganos, Panagiotis, Skodras, Athanassios |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856082/ https://www.ncbi.nlm.nih.gov/pubmed/29443923 http://dx.doi.org/10.3390/s18020592 |
Ejemplares similares
-
Detecting Falls with Wearable Sensors Using Machine Learning Techniques
por: Özdemir, Ahmet Turan, et al.
Publicado: (2014) -
Smart Wearables with Sensor Fusion for Fall Detection in Firefighting
por: Chai, Xiaoqing, et al.
Publicado: (2021) -
Real-Time Analysis of Hand Gesture Recognition with Temporal Convolutional Networks †
por: Tsinganos, Panagiotis, et al.
Publicado: (2022) -
Data Augmentation of Surface Electromyography for Hand Gesture Recognition
por: Tsinganos, Panagiotis, et al.
Publicado: (2020) -
Comparison of machine learning approaches for near-fall-detection with motion sensors
por: Hellmers, Sandra, et al.
Publicado: (2023)