Cargando…
Multi-Feature Classification of Multi-Sensor Satellite Imagery Based on Dual-Polarimetric Sentinel-1A, Landsat-8 OLI, and Hyperion Images for Urban Land-Cover Classification
This paper focuses on evaluating the ability and contribution of using backscatter intensity, texture, coherence, and color features extracted from Sentinel-1A data for urban land cover classification and comparing different multi-sensor land cover mapping methods to improve classification accuracy....
Autores principales: | Zhou, Tao, Li, Zhaofu, Pan, Jianjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856114/ https://www.ncbi.nlm.nih.gov/pubmed/29382073 http://dx.doi.org/10.3390/s18020373 |
Ejemplares similares
-
Extracting Coastal Raft Aquaculture Data from Landsat 8 OLI Imagery
por: Wang, Jun, et al.
Publicado: (2019) -
An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery
por: Gupta, Kaushik, et al.
Publicado: (2018) -
Decision-level fusion of Sentinel-1 SAR and Landsat 8 OLI texture features for crop discrimination and classification: case of Masvingo, Zimbabwe
por: Chen, Shengbo, et al.
Publicado: (2020) -
Analysis-ready satellite data mosaics from Landsat and Sentinel-2 imagery
por: Ørka, Hans Ole, et al.
Publicado: (2023) -
Assessing multi-decadal land-cover – land-use change in two wildlife protected areas in Tanzania using Landsat imagery
por: Mtui, Devolent T., et al.
Publicado: (2017)