Cargando…
Estimating summary statistics for electronic health record laboratory data for use in high-throughput phenotyping algorithms
We study the question of how to represent or summarize raw laboratory data taken from an electronic health record (EHR) using parametric model selection to reduce or cope with biases induced through clinical care. It has been previously demonstrated that the health care process (Hripcsak and Albers,...
Autores principales: | Albers, D.J., Elhadad, N., Claassen, J., Perotte, R., Goldstein, A., Hripcsak, G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856130/ https://www.ncbi.nlm.nih.gov/pubmed/29369797 http://dx.doi.org/10.1016/j.jbi.2018.01.004 |
Ejemplares similares
-
Dynamical Phenotyping: Using Temporal Analysis of Clinically Collected Physiologic Data to Stratify Populations
por: Albers, D. J., et al.
Publicado: (2014) -
Parameterizing time in electronic health record studies
por: Hripcsak, George, et al.
Publicado: (2015) -
Next-generation phenotyping of electronic health records
por: Hripcsak, George, et al.
Publicado: (2013) -
Risk prediction for chronic kidney disease progression using heterogeneous electronic health record data and time series analysis
por: Perotte, Adler, et al.
Publicado: (2015) -
Evaluation considerations for EHR-based phenotyping algorithms: A case study for drug-induced liver injury
por: Overby, Casey Lynnette, et al.
Publicado: (2013)