Cargando…

Experimental L-Band Airborne SAR for Oil Spill Response at Sea and in Coastal Waters

Satellite synthetic aperture radar (SAR) is frequently used during oil spill response efforts to identify oil slick extent, but suffers from the major disadvantages of potential long latency between when a spill occurs and when a satellite can image the site and an inability to continuously track th...

Descripción completa

Detalles Bibliográficos
Autores principales: Jones, Cathleen E., Holt, Benjamin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856168/
https://www.ncbi.nlm.nih.gov/pubmed/29470391
http://dx.doi.org/10.3390/s18020641
Descripción
Sumario:Satellite synthetic aperture radar (SAR) is frequently used during oil spill response efforts to identify oil slick extent, but suffers from the major disadvantages of potential long latency between when a spill occurs and when a satellite can image the site and an inability to continuously track the spill as it develops. We show using data acquired with the Uninhabited Aerial Vehicle SAR (UAVSAR) instrument how a low noise, high resolution, L-band SAR could be used for oil spill response, with specific examples of tracking slick extent, position and weathering; determining zones of relatively thicker or more emulsified oil within a slick; and identifying oil slicks in coastal areas where look-alikes such as calm waters or biogenic slicks can confound the identification of mineral oil spills. From these key points, the essential features of an airborne SAR system for operational oil spill response are described, and further research needed to determine SAR’s capabilities and limitations in quantifying slick thickness is discussed.