Cargando…
Defect-Repairable Latent Feature Extraction of Driving Behavior via a Deep Sparse Autoencoder
Data representing driving behavior, as measured by various sensors installed in a vehicle, are collected as multi-dimensional sensor time-series data. These data often include redundant information, e.g., both the speed of wheels and the engine speed represent the velocity of the vehicle. Redundant...
Autores principales: | Liu, Hailong, Taniguchi, Tadahiro, Takenaka, Kazuhito, Bando, Takashi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856181/ https://www.ncbi.nlm.nih.gov/pubmed/29462931 http://dx.doi.org/10.3390/s18020608 |
Ejemplares similares
-
Deep Sparse Autoencoder and Recursive Neural Network for EEG Emotion Recognition
por: Li, Qi, et al.
Publicado: (2022) -
Optimal Deep Stacked Sparse Autoencoder Based Osteosarcoma Detection and Classification Model
por: Fakieh, Bahjat, et al.
Publicado: (2022) -
Sparse Convolutional Denoising Autoencoders for Genotype Imputation
por: Chen, Junjie, et al.
Publicado: (2019) -
EEG-Based Emotion Classification Using a Deep Neural Network and Sparse Autoencoder
por: Liu, Junxiu, et al.
Publicado: (2020) -
A Hybrid Recommender System Based on Autoencoder and Latent Feature Analysis
por: Guo, Shangzhi, et al.
Publicado: (2023)