Cargando…
Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control
BACKGROUND: Although electromyogram (EMG) pattern recognition (PR) for multifunctional upper limb prosthesis control has been reported for decades, the clinical benefits have rarely been examined. The study purposes were to: 1) compare self-report and performance outcomes of a transradial amputee im...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856206/ https://www.ncbi.nlm.nih.gov/pubmed/29544501 http://dx.doi.org/10.1186/s12984-018-0361-3 |
_version_ | 1783307266374500352 |
---|---|
author | Resnik, Linda Huang, He (Helen) Winslow, Anna Crouch, Dustin L. Zhang, Fan Wolk, Nancy |
author_facet | Resnik, Linda Huang, He (Helen) Winslow, Anna Crouch, Dustin L. Zhang, Fan Wolk, Nancy |
author_sort | Resnik, Linda |
collection | PubMed |
description | BACKGROUND: Although electromyogram (EMG) pattern recognition (PR) for multifunctional upper limb prosthesis control has been reported for decades, the clinical benefits have rarely been examined. The study purposes were to: 1) compare self-report and performance outcomes of a transradial amputee immediately after training and one week after training of direct myoelectric control and EMG pattern recognition (PR) for a two-degree-of-freedom (DOF) prosthesis, and 2) examine the change in outcomes one week after pattern recognition training and the rate of skill acquisition in two subjects with transradial amputations. METHODS: In this cross-over study, participants were randomized to receive either PR control or direct control (DC) training of a 2 DOF myoelectric prosthesis first. Participants were 2 persons with traumatic transradial (TR) amputations who were 1 DOF myoelectric users. Outcomes, including measures of dexterity with and without cognitive load, activity performance, self-reported function, and prosthetic satisfaction were administered immediately and 1 week after training. Speed of skill acquisition was assessed hourly. One subject completed training under both PR control and DC conditions. Both subjects completed PR training and testing. Outcomes of test metrics were analyzed descriptively. RESULTS: Comparison of the two control strategies in one subject who completed training in both conditions showed better scores in 2 (18%) dexterity measures, 1 (50%) dexterity measure with cognitive load, and 1 (50%) self-report functional measure using DC, as compared to PR. Scores of all other metrics were comparable. Both subjects showed decline in dexterity after training. Findings related to rate of skill acquisition varied considerably by subject. CONCLUSIONS: Outcomes of PR and DC for operating a 2-DOF prosthesis in a single subject cross-over study were similar for 74% of metrics, and favored DC in 26% of metrics. The two subjects who completed PR training showed decline in dexterity one week after training ended. Findings related to rate of skill acquisition varied considerably by subject. This study, despite its small sample size, highlights a need for additional research quantifying the functional and clinical benefits of PR control for upper limb prostheses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12984-018-0361-3) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5856206 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-58562062018-03-22 Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control Resnik, Linda Huang, He (Helen) Winslow, Anna Crouch, Dustin L. Zhang, Fan Wolk, Nancy J Neuroeng Rehabil Research BACKGROUND: Although electromyogram (EMG) pattern recognition (PR) for multifunctional upper limb prosthesis control has been reported for decades, the clinical benefits have rarely been examined. The study purposes were to: 1) compare self-report and performance outcomes of a transradial amputee immediately after training and one week after training of direct myoelectric control and EMG pattern recognition (PR) for a two-degree-of-freedom (DOF) prosthesis, and 2) examine the change in outcomes one week after pattern recognition training and the rate of skill acquisition in two subjects with transradial amputations. METHODS: In this cross-over study, participants were randomized to receive either PR control or direct control (DC) training of a 2 DOF myoelectric prosthesis first. Participants were 2 persons with traumatic transradial (TR) amputations who were 1 DOF myoelectric users. Outcomes, including measures of dexterity with and without cognitive load, activity performance, self-reported function, and prosthetic satisfaction were administered immediately and 1 week after training. Speed of skill acquisition was assessed hourly. One subject completed training under both PR control and DC conditions. Both subjects completed PR training and testing. Outcomes of test metrics were analyzed descriptively. RESULTS: Comparison of the two control strategies in one subject who completed training in both conditions showed better scores in 2 (18%) dexterity measures, 1 (50%) dexterity measure with cognitive load, and 1 (50%) self-report functional measure using DC, as compared to PR. Scores of all other metrics were comparable. Both subjects showed decline in dexterity after training. Findings related to rate of skill acquisition varied considerably by subject. CONCLUSIONS: Outcomes of PR and DC for operating a 2-DOF prosthesis in a single subject cross-over study were similar for 74% of metrics, and favored DC in 26% of metrics. The two subjects who completed PR training showed decline in dexterity one week after training ended. Findings related to rate of skill acquisition varied considerably by subject. This study, despite its small sample size, highlights a need for additional research quantifying the functional and clinical benefits of PR control for upper limb prostheses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12984-018-0361-3) contains supplementary material, which is available to authorized users. BioMed Central 2018-03-15 /pmc/articles/PMC5856206/ /pubmed/29544501 http://dx.doi.org/10.1186/s12984-018-0361-3 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Resnik, Linda Huang, He (Helen) Winslow, Anna Crouch, Dustin L. Zhang, Fan Wolk, Nancy Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control |
title | Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control |
title_full | Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control |
title_fullStr | Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control |
title_full_unstemmed | Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control |
title_short | Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control |
title_sort | evaluation of emg pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856206/ https://www.ncbi.nlm.nih.gov/pubmed/29544501 http://dx.doi.org/10.1186/s12984-018-0361-3 |
work_keys_str_mv | AT resniklinda evaluationofemgpatternrecognitionforupperlimbprosthesiscontrolacasestudyincomparisonwithdirectmyoelectriccontrol AT huanghehelen evaluationofemgpatternrecognitionforupperlimbprosthesiscontrolacasestudyincomparisonwithdirectmyoelectriccontrol AT winslowanna evaluationofemgpatternrecognitionforupperlimbprosthesiscontrolacasestudyincomparisonwithdirectmyoelectriccontrol AT crouchdustinl evaluationofemgpatternrecognitionforupperlimbprosthesiscontrolacasestudyincomparisonwithdirectmyoelectriccontrol AT zhangfan evaluationofemgpatternrecognitionforupperlimbprosthesiscontrolacasestudyincomparisonwithdirectmyoelectriccontrol AT wolknancy evaluationofemgpatternrecognitionforupperlimbprosthesiscontrolacasestudyincomparisonwithdirectmyoelectriccontrol |