Cargando…
Optimization by Adaptive Stochastic Descent
When standard optimization methods fail to find a satisfactory solution for a parameter fitting problem, a tempting recourse is to adjust parameters manually. While tedious, this approach can be surprisingly powerful in terms of achieving optimal or near-optimal solutions. This paper outlines an opt...
Autores principales: | Kerr, Cliff C., Dura-Bernal, Salvador, Smolinski, Tomasz G., Chadderdon, George L., Wilson, David P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856269/ https://www.ncbi.nlm.nih.gov/pubmed/29547665 http://dx.doi.org/10.1371/journal.pone.0192944 |
Ejemplares similares
-
Stochastic gradient descent for optimization for nuclear systems
por: Williams, Austin, et al.
Publicado: (2023) -
Using the Stochastic Gradient Descent Optimization Algorithm on Estimating of Reactivity Ratios
por: Fazakas-Anca, Iosif Sorin, et al.
Publicado: (2021) -
Training a spiking neuronal network model of visual-motor cortex to play a virtual racket-ball game using reinforcement learning
por: Anwar, Haroon, et al.
Publicado: (2022) -
The Cascade Analysis Tool: software to analyze and optimize care cascades
por: Kedziora, David J, et al.
Publicado: (2019) -
Reference-shaping adaptive control by using gradient descent optimizers
por: Alagoz, Baris Baykant, et al.
Publicado: (2017)