Cargando…
Bayesian adaptive bandit-based designs using the Gittins index for multi-armed trials with normally distributed endpoints
Adaptive designs for multi-armed clinical trials have become increasingly popular recently because of their potential to shorten development times and to increase patient response. However, developing response-adaptive designs that offer patient-benefit while ensuring the resulting trial provides a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856359/ https://www.ncbi.nlm.nih.gov/pubmed/29551849 http://dx.doi.org/10.1080/02664763.2017.1342780 |
_version_ | 1783307292360310784 |
---|---|
author | Smith, Adam L. Villar, Sofía S. |
author_facet | Smith, Adam L. Villar, Sofía S. |
author_sort | Smith, Adam L. |
collection | PubMed |
description | Adaptive designs for multi-armed clinical trials have become increasingly popular recently because of their potential to shorten development times and to increase patient response. However, developing response-adaptive designs that offer patient-benefit while ensuring the resulting trial provides a statistically rigorous and unbiased comparison of the different treatments included is highly challenging. In this paper, the theory of Multi-Armed Bandit Problems is used to define near optimal adaptive designs in the context of a clinical trial with a normally distributed endpoint with known variance. We report the operating characteristics (type I error, power, bias) and patient-benefit of these approaches and alternative designs using simulation studies based on an ongoing trial. These results are then compared to those recently published in the context of Bernoulli endpoints. Many limitations and advantages are similar in both cases but there are also important differences, specially with respect to type I error control. This paper proposes a simulation-based testing procedure to correct for the observed type I error inflation that bandit-based and adaptive rules can induce. |
format | Online Article Text |
id | pubmed-5856359 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-58563592018-03-16 Bayesian adaptive bandit-based designs using the Gittins index for multi-armed trials with normally distributed endpoints Smith, Adam L. Villar, Sofía S. J Appl Stat Original Articles Adaptive designs for multi-armed clinical trials have become increasingly popular recently because of their potential to shorten development times and to increase patient response. However, developing response-adaptive designs that offer patient-benefit while ensuring the resulting trial provides a statistically rigorous and unbiased comparison of the different treatments included is highly challenging. In this paper, the theory of Multi-Armed Bandit Problems is used to define near optimal adaptive designs in the context of a clinical trial with a normally distributed endpoint with known variance. We report the operating characteristics (type I error, power, bias) and patient-benefit of these approaches and alternative designs using simulation studies based on an ongoing trial. These results are then compared to those recently published in the context of Bernoulli endpoints. Many limitations and advantages are similar in both cases but there are also important differences, specially with respect to type I error control. This paper proposes a simulation-based testing procedure to correct for the observed type I error inflation that bandit-based and adaptive rules can induce. Taylor & Francis 2017-06-28 /pmc/articles/PMC5856359/ /pubmed/29551849 http://dx.doi.org/10.1080/02664763.2017.1342780 Text en © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Smith, Adam L. Villar, Sofía S. Bayesian adaptive bandit-based designs using the Gittins index for multi-armed trials with normally distributed endpoints |
title | Bayesian adaptive bandit-based designs using the Gittins index for multi-armed trials with normally distributed endpoints |
title_full | Bayesian adaptive bandit-based designs using the Gittins index for multi-armed trials with normally distributed endpoints |
title_fullStr | Bayesian adaptive bandit-based designs using the Gittins index for multi-armed trials with normally distributed endpoints |
title_full_unstemmed | Bayesian adaptive bandit-based designs using the Gittins index for multi-armed trials with normally distributed endpoints |
title_short | Bayesian adaptive bandit-based designs using the Gittins index for multi-armed trials with normally distributed endpoints |
title_sort | bayesian adaptive bandit-based designs using the gittins index for multi-armed trials with normally distributed endpoints |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856359/ https://www.ncbi.nlm.nih.gov/pubmed/29551849 http://dx.doi.org/10.1080/02664763.2017.1342780 |
work_keys_str_mv | AT smithadaml bayesianadaptivebanditbaseddesignsusingthegittinsindexformultiarmedtrialswithnormallydistributedendpoints AT villarsofias bayesianadaptivebanditbaseddesignsusingthegittinsindexformultiarmedtrialswithnormallydistributedendpoints |