Cargando…

Morphological changes in rat rectus abdominis muscle induced by diabetes and pregnancy

The urethral muscle of diabetic pregnant rats is affected by long-term mild diabetes and short-term severe diabetes, which plays a crucial role in the pathogenesis of pelvic floor disorders. We hypothesized that muscles outside the pelvis are subject to similar changes. The current study aimed at an...

Descripción completa

Detalles Bibliográficos
Autores principales: Vesentini, G., Marini, G., Piculo, F., Damasceno, D.C., Matheus, S.M.M., Felisbino, S.L., Calderon, I.M.P., Hijaz, A., Barbosa, A.M.P., Rudge, M.V.C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Associação Brasileira de Divulgação Científica 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856447/
https://www.ncbi.nlm.nih.gov/pubmed/29513796
http://dx.doi.org/10.1590/1414-431X20177035
Descripción
Sumario:The urethral muscle of diabetic pregnant rats is affected by long-term mild diabetes and short-term severe diabetes, which plays a crucial role in the pathogenesis of pelvic floor disorders. We hypothesized that muscles outside the pelvis are subject to similar changes. The current study aimed at analyzing the effects of long-term mild and short-term severe diabetes on the structure and ultrastructure of fiber muscles and collagen in rats' rectus abdominis (RA) muscle. Therefore, the RA muscle of virgin, pregnant, long-term mild diabetic, short-term severe diabetic, long-term mild diabetic pregnant and short-term severe diabetic pregnant 3-month-old Wistar rats were collected. The structure was analyzed by picrosirius red staining, immunohistochemistry for fast and slow muscle fibers and transmission electron microscopy. We investigated two levels of STZ- induced diabetes: long-term mild diabetes (blood glucose level: 120–200 mg/dL) and short-term severe diabetes (blood glucose level >300 mg/dL). Long-term mild diabetic pregnant and short-term severe diabetic pregnant rats had decreased fast fibers and increased slow fibers, disrupted areas of sarcomere, intermyofibrillar mitochondria and myelin figures in the RA muscle. Both groups enabled us to analyze the specific influence of pregnancy, separately from diabetes. The current study demonstrated that diabetes and pregnancy induced intramuscular transformation and reorganization of RA muscle with a switch of fiber type adjusting their architecture according to intensity and duration of hyperglycemic insult within pregnancy.