Cargando…
Transitory microbial habitat in the hyperarid Atacama Desert
Traces of life are nearly ubiquitous on Earth. However, a central unresolved question is whether these traces always indicate an active microbial community or whether, in extreme environments, such as hyperarid deserts, they instead reflect just dormant or dead cells. Although microbial biomass and...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856521/ https://www.ncbi.nlm.nih.gov/pubmed/29483268 http://dx.doi.org/10.1073/pnas.1714341115 |
_version_ | 1783307317955002368 |
---|---|
author | Schulze-Makuch, Dirk Wagner, Dirk Kounaves, Samuel P. Mangelsdorf, Kai Devine, Kevin G. de Vera, Jean-Pierre Schmitt-Kopplin, Philippe Grossart, Hans-Peter Parro, Victor Kaupenjohann, Martin Galy, Albert Schneider, Beate Airo, Alessandro Frösler, Jan Davila, Alfonso F. Arens, Felix L. Cáceres, Luis Cornejo, Francisco Solís Carrizo, Daniel Dartnell, Lewis DiRuggiero, Jocelyne Flury, Markus Ganzert, Lars Gessner, Mark O. Grathwohl, Peter Guan, Lisa Heinz, Jacob Hess, Matthias Keppler, Frank Maus, Deborah McKay, Christopher P. Meckenstock, Rainer U. Montgomery, Wren Oberlin, Elizabeth A. Probst, Alexander J. Sáenz, Johan S. Sattler, Tobias Schirmack, Janosch Sephton, Mark A. Schloter, Michael Uhl, Jenny Valenzuela, Bernardita Vestergaard, Gisle Wörmer, Lars Zamorano, Pedro |
author_facet | Schulze-Makuch, Dirk Wagner, Dirk Kounaves, Samuel P. Mangelsdorf, Kai Devine, Kevin G. de Vera, Jean-Pierre Schmitt-Kopplin, Philippe Grossart, Hans-Peter Parro, Victor Kaupenjohann, Martin Galy, Albert Schneider, Beate Airo, Alessandro Frösler, Jan Davila, Alfonso F. Arens, Felix L. Cáceres, Luis Cornejo, Francisco Solís Carrizo, Daniel Dartnell, Lewis DiRuggiero, Jocelyne Flury, Markus Ganzert, Lars Gessner, Mark O. Grathwohl, Peter Guan, Lisa Heinz, Jacob Hess, Matthias Keppler, Frank Maus, Deborah McKay, Christopher P. Meckenstock, Rainer U. Montgomery, Wren Oberlin, Elizabeth A. Probst, Alexander J. Sáenz, Johan S. Sattler, Tobias Schirmack, Janosch Sephton, Mark A. Schloter, Michael Uhl, Jenny Valenzuela, Bernardita Vestergaard, Gisle Wörmer, Lars Zamorano, Pedro |
author_sort | Schulze-Makuch, Dirk |
collection | PubMed |
description | Traces of life are nearly ubiquitous on Earth. However, a central unresolved question is whether these traces always indicate an active microbial community or whether, in extreme environments, such as hyperarid deserts, they instead reflect just dormant or dead cells. Although microbial biomass and diversity decrease with increasing aridity in the Atacama Desert, we provide multiple lines of evidence for the presence of an at times metabolically active, microbial community in one of the driest places on Earth. We base this observation on four major lines of evidence: (i) a physico-chemical characterization of the soil habitability after an exceptional rain event, (ii) identified biomolecules indicative of potentially active cells [e.g., presence of ATP, phospholipid fatty acids (PLFAs), metabolites, and enzymatic activity], (iii) measurements of in situ replication rates of genomes of uncultivated bacteria reconstructed from selected samples, and (iv) microbial community patterns specific to soil parameters and depths. We infer that the microbial populations have undergone selection and adaptation in response to their specific soil microenvironment and in particular to the degree of aridity. Collectively, our results highlight that even the hyperarid Atacama Desert can provide a habitable environment for microorganisms that allows them to become metabolically active following an episodic increase in moisture and that once it decreases, so does the activity of the microbiota. These results have implications for the prospect of life on other planets such as Mars, which has transitioned from an earlier wetter environment to today’s extreme hyperaridity. |
format | Online Article Text |
id | pubmed-5856521 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-58565212018-04-06 Transitory microbial habitat in the hyperarid Atacama Desert Schulze-Makuch, Dirk Wagner, Dirk Kounaves, Samuel P. Mangelsdorf, Kai Devine, Kevin G. de Vera, Jean-Pierre Schmitt-Kopplin, Philippe Grossart, Hans-Peter Parro, Victor Kaupenjohann, Martin Galy, Albert Schneider, Beate Airo, Alessandro Frösler, Jan Davila, Alfonso F. Arens, Felix L. Cáceres, Luis Cornejo, Francisco Solís Carrizo, Daniel Dartnell, Lewis DiRuggiero, Jocelyne Flury, Markus Ganzert, Lars Gessner, Mark O. Grathwohl, Peter Guan, Lisa Heinz, Jacob Hess, Matthias Keppler, Frank Maus, Deborah McKay, Christopher P. Meckenstock, Rainer U. Montgomery, Wren Oberlin, Elizabeth A. Probst, Alexander J. Sáenz, Johan S. Sattler, Tobias Schirmack, Janosch Sephton, Mark A. Schloter, Michael Uhl, Jenny Valenzuela, Bernardita Vestergaard, Gisle Wörmer, Lars Zamorano, Pedro Proc Natl Acad Sci U S A Physical Sciences Traces of life are nearly ubiquitous on Earth. However, a central unresolved question is whether these traces always indicate an active microbial community or whether, in extreme environments, such as hyperarid deserts, they instead reflect just dormant or dead cells. Although microbial biomass and diversity decrease with increasing aridity in the Atacama Desert, we provide multiple lines of evidence for the presence of an at times metabolically active, microbial community in one of the driest places on Earth. We base this observation on four major lines of evidence: (i) a physico-chemical characterization of the soil habitability after an exceptional rain event, (ii) identified biomolecules indicative of potentially active cells [e.g., presence of ATP, phospholipid fatty acids (PLFAs), metabolites, and enzymatic activity], (iii) measurements of in situ replication rates of genomes of uncultivated bacteria reconstructed from selected samples, and (iv) microbial community patterns specific to soil parameters and depths. We infer that the microbial populations have undergone selection and adaptation in response to their specific soil microenvironment and in particular to the degree of aridity. Collectively, our results highlight that even the hyperarid Atacama Desert can provide a habitable environment for microorganisms that allows them to become metabolically active following an episodic increase in moisture and that once it decreases, so does the activity of the microbiota. These results have implications for the prospect of life on other planets such as Mars, which has transitioned from an earlier wetter environment to today’s extreme hyperaridity. National Academy of Sciences 2018-03-13 2018-02-26 /pmc/articles/PMC5856521/ /pubmed/29483268 http://dx.doi.org/10.1073/pnas.1714341115 Text en Copyright © 2018 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Physical Sciences Schulze-Makuch, Dirk Wagner, Dirk Kounaves, Samuel P. Mangelsdorf, Kai Devine, Kevin G. de Vera, Jean-Pierre Schmitt-Kopplin, Philippe Grossart, Hans-Peter Parro, Victor Kaupenjohann, Martin Galy, Albert Schneider, Beate Airo, Alessandro Frösler, Jan Davila, Alfonso F. Arens, Felix L. Cáceres, Luis Cornejo, Francisco Solís Carrizo, Daniel Dartnell, Lewis DiRuggiero, Jocelyne Flury, Markus Ganzert, Lars Gessner, Mark O. Grathwohl, Peter Guan, Lisa Heinz, Jacob Hess, Matthias Keppler, Frank Maus, Deborah McKay, Christopher P. Meckenstock, Rainer U. Montgomery, Wren Oberlin, Elizabeth A. Probst, Alexander J. Sáenz, Johan S. Sattler, Tobias Schirmack, Janosch Sephton, Mark A. Schloter, Michael Uhl, Jenny Valenzuela, Bernardita Vestergaard, Gisle Wörmer, Lars Zamorano, Pedro Transitory microbial habitat in the hyperarid Atacama Desert |
title | Transitory microbial habitat in the hyperarid Atacama Desert |
title_full | Transitory microbial habitat in the hyperarid Atacama Desert |
title_fullStr | Transitory microbial habitat in the hyperarid Atacama Desert |
title_full_unstemmed | Transitory microbial habitat in the hyperarid Atacama Desert |
title_short | Transitory microbial habitat in the hyperarid Atacama Desert |
title_sort | transitory microbial habitat in the hyperarid atacama desert |
topic | Physical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856521/ https://www.ncbi.nlm.nih.gov/pubmed/29483268 http://dx.doi.org/10.1073/pnas.1714341115 |
work_keys_str_mv | AT schulzemakuchdirk transitorymicrobialhabitatinthehyperaridatacamadesert AT wagnerdirk transitorymicrobialhabitatinthehyperaridatacamadesert AT kounavessamuelp transitorymicrobialhabitatinthehyperaridatacamadesert AT mangelsdorfkai transitorymicrobialhabitatinthehyperaridatacamadesert AT devinekeving transitorymicrobialhabitatinthehyperaridatacamadesert AT deverajeanpierre transitorymicrobialhabitatinthehyperaridatacamadesert AT schmittkopplinphilippe transitorymicrobialhabitatinthehyperaridatacamadesert AT grossarthanspeter transitorymicrobialhabitatinthehyperaridatacamadesert AT parrovictor transitorymicrobialhabitatinthehyperaridatacamadesert AT kaupenjohannmartin transitorymicrobialhabitatinthehyperaridatacamadesert AT galyalbert transitorymicrobialhabitatinthehyperaridatacamadesert AT schneiderbeate transitorymicrobialhabitatinthehyperaridatacamadesert AT airoalessandro transitorymicrobialhabitatinthehyperaridatacamadesert AT froslerjan transitorymicrobialhabitatinthehyperaridatacamadesert AT davilaalfonsof transitorymicrobialhabitatinthehyperaridatacamadesert AT arensfelixl transitorymicrobialhabitatinthehyperaridatacamadesert AT caceresluis transitorymicrobialhabitatinthehyperaridatacamadesert AT cornejofranciscosolis transitorymicrobialhabitatinthehyperaridatacamadesert AT carrizodaniel transitorymicrobialhabitatinthehyperaridatacamadesert AT dartnelllewis transitorymicrobialhabitatinthehyperaridatacamadesert AT diruggierojocelyne transitorymicrobialhabitatinthehyperaridatacamadesert AT flurymarkus transitorymicrobialhabitatinthehyperaridatacamadesert AT ganzertlars transitorymicrobialhabitatinthehyperaridatacamadesert AT gessnermarko transitorymicrobialhabitatinthehyperaridatacamadesert AT grathwohlpeter transitorymicrobialhabitatinthehyperaridatacamadesert AT guanlisa transitorymicrobialhabitatinthehyperaridatacamadesert AT heinzjacob transitorymicrobialhabitatinthehyperaridatacamadesert AT hessmatthias transitorymicrobialhabitatinthehyperaridatacamadesert AT kepplerfrank transitorymicrobialhabitatinthehyperaridatacamadesert AT mausdeborah transitorymicrobialhabitatinthehyperaridatacamadesert AT mckaychristopherp transitorymicrobialhabitatinthehyperaridatacamadesert AT meckenstockraineru transitorymicrobialhabitatinthehyperaridatacamadesert AT montgomerywren transitorymicrobialhabitatinthehyperaridatacamadesert AT oberlinelizabetha transitorymicrobialhabitatinthehyperaridatacamadesert AT probstalexanderj transitorymicrobialhabitatinthehyperaridatacamadesert AT saenzjohans transitorymicrobialhabitatinthehyperaridatacamadesert AT sattlertobias transitorymicrobialhabitatinthehyperaridatacamadesert AT schirmackjanosch transitorymicrobialhabitatinthehyperaridatacamadesert AT sephtonmarka transitorymicrobialhabitatinthehyperaridatacamadesert AT schlotermichael transitorymicrobialhabitatinthehyperaridatacamadesert AT uhljenny transitorymicrobialhabitatinthehyperaridatacamadesert AT valenzuelabernardita transitorymicrobialhabitatinthehyperaridatacamadesert AT vestergaardgisle transitorymicrobialhabitatinthehyperaridatacamadesert AT wormerlars transitorymicrobialhabitatinthehyperaridatacamadesert AT zamoranopedro transitorymicrobialhabitatinthehyperaridatacamadesert |