Cargando…
Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila
The brain adaptively integrates present sensory input, past experience, and options for future action. The insect mushroom body exemplifies how a central brain structure brings about such integration. Here we use a combination of systematic single-cell labeling, connectomics, transgenic silencing, a...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856778/ https://www.ncbi.nlm.nih.gov/pubmed/29549237 http://dx.doi.org/10.1038/s41467-018-03130-1 |
_version_ | 1783307337671376896 |
---|---|
author | Saumweber, Timo Rohwedder, Astrid Schleyer, Michael Eichler, Katharina Chen, Yi-chun Aso, Yoshinori Cardona, Albert Eschbach, Claire Kobler, Oliver Voigt, Anne Durairaja, Archana Mancini, Nino Zlatic, Marta Truman, James W. Thum, Andreas S. Gerber, Bertram |
author_facet | Saumweber, Timo Rohwedder, Astrid Schleyer, Michael Eichler, Katharina Chen, Yi-chun Aso, Yoshinori Cardona, Albert Eschbach, Claire Kobler, Oliver Voigt, Anne Durairaja, Archana Mancini, Nino Zlatic, Marta Truman, James W. Thum, Andreas S. Gerber, Bertram |
author_sort | Saumweber, Timo |
collection | PubMed |
description | The brain adaptively integrates present sensory input, past experience, and options for future action. The insect mushroom body exemplifies how a central brain structure brings about such integration. Here we use a combination of systematic single-cell labeling, connectomics, transgenic silencing, and activation experiments to study the mushroom body at single-cell resolution, focusing on the behavioral architecture of its input and output neurons (MBINs and MBONs), and of the mushroom body intrinsic APL neuron. Our results reveal the identity and morphology of almost all of these 44 neurons in stage 3 Drosophila larvae. Upon an initial screen, functional analyses focusing on the mushroom body medial lobe uncover sparse and specific functions of its dopaminergic MBINs, its MBONs, and of the GABAergic APL neuron across three behavioral tasks, namely odor preference, taste preference, and associative learning between odor and taste. Our results thus provide a cellular-resolution study case of how brains organize behavior. |
format | Online Article Text |
id | pubmed-5856778 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-58567782018-03-20 Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila Saumweber, Timo Rohwedder, Astrid Schleyer, Michael Eichler, Katharina Chen, Yi-chun Aso, Yoshinori Cardona, Albert Eschbach, Claire Kobler, Oliver Voigt, Anne Durairaja, Archana Mancini, Nino Zlatic, Marta Truman, James W. Thum, Andreas S. Gerber, Bertram Nat Commun Article The brain adaptively integrates present sensory input, past experience, and options for future action. The insect mushroom body exemplifies how a central brain structure brings about such integration. Here we use a combination of systematic single-cell labeling, connectomics, transgenic silencing, and activation experiments to study the mushroom body at single-cell resolution, focusing on the behavioral architecture of its input and output neurons (MBINs and MBONs), and of the mushroom body intrinsic APL neuron. Our results reveal the identity and morphology of almost all of these 44 neurons in stage 3 Drosophila larvae. Upon an initial screen, functional analyses focusing on the mushroom body medial lobe uncover sparse and specific functions of its dopaminergic MBINs, its MBONs, and of the GABAergic APL neuron across three behavioral tasks, namely odor preference, taste preference, and associative learning between odor and taste. Our results thus provide a cellular-resolution study case of how brains organize behavior. Nature Publishing Group UK 2018-03-16 /pmc/articles/PMC5856778/ /pubmed/29549237 http://dx.doi.org/10.1038/s41467-018-03130-1 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Saumweber, Timo Rohwedder, Astrid Schleyer, Michael Eichler, Katharina Chen, Yi-chun Aso, Yoshinori Cardona, Albert Eschbach, Claire Kobler, Oliver Voigt, Anne Durairaja, Archana Mancini, Nino Zlatic, Marta Truman, James W. Thum, Andreas S. Gerber, Bertram Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila |
title | Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila |
title_full | Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila |
title_fullStr | Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila |
title_full_unstemmed | Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila |
title_short | Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila |
title_sort | functional architecture of reward learning in mushroom body extrinsic neurons of larval drosophila |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856778/ https://www.ncbi.nlm.nih.gov/pubmed/29549237 http://dx.doi.org/10.1038/s41467-018-03130-1 |
work_keys_str_mv | AT saumwebertimo functionalarchitectureofrewardlearninginmushroombodyextrinsicneuronsoflarvaldrosophila AT rohwedderastrid functionalarchitectureofrewardlearninginmushroombodyextrinsicneuronsoflarvaldrosophila AT schleyermichael functionalarchitectureofrewardlearninginmushroombodyextrinsicneuronsoflarvaldrosophila AT eichlerkatharina functionalarchitectureofrewardlearninginmushroombodyextrinsicneuronsoflarvaldrosophila AT chenyichun functionalarchitectureofrewardlearninginmushroombodyextrinsicneuronsoflarvaldrosophila AT asoyoshinori functionalarchitectureofrewardlearninginmushroombodyextrinsicneuronsoflarvaldrosophila AT cardonaalbert functionalarchitectureofrewardlearninginmushroombodyextrinsicneuronsoflarvaldrosophila AT eschbachclaire functionalarchitectureofrewardlearninginmushroombodyextrinsicneuronsoflarvaldrosophila AT kobleroliver functionalarchitectureofrewardlearninginmushroombodyextrinsicneuronsoflarvaldrosophila AT voigtanne functionalarchitectureofrewardlearninginmushroombodyextrinsicneuronsoflarvaldrosophila AT durairajaarchana functionalarchitectureofrewardlearninginmushroombodyextrinsicneuronsoflarvaldrosophila AT mancininino functionalarchitectureofrewardlearninginmushroombodyextrinsicneuronsoflarvaldrosophila AT zlaticmarta functionalarchitectureofrewardlearninginmushroombodyextrinsicneuronsoflarvaldrosophila AT trumanjamesw functionalarchitectureofrewardlearninginmushroombodyextrinsicneuronsoflarvaldrosophila AT thumandreass functionalarchitectureofrewardlearninginmushroombodyextrinsicneuronsoflarvaldrosophila AT gerberbertram functionalarchitectureofrewardlearninginmushroombodyextrinsicneuronsoflarvaldrosophila |