Cargando…
Using unique surface patterns of injection moulded plastic components as an image based Physical Unclonable Function for secure component identification
A Physical Unclonable Function uses random and inherent properties of a physical entity and can be used to uniquely identify components e.g., for anti-counterfeiting purposes. In this work we demonstrate that the surface patterns of injection moulded plastic components themselves are inherently uniq...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856780/ https://www.ncbi.nlm.nih.gov/pubmed/29549299 http://dx.doi.org/10.1038/s41598-018-22876-8 |
Sumario: | A Physical Unclonable Function uses random and inherent properties of a physical entity and can be used to uniquely identify components e.g., for anti-counterfeiting purposes. In this work we demonstrate that the surface patterns of injection moulded plastic components themselves are inherently unique and hence can be used as a PUF for reliable and secure identification. We further demonstrate that these unique surface patterns are easily accessible since they can be photographed with a simple camera set-up. This is exemplarily demonstrated for two different plastic materials on an overall of 200 injection moulded components. A set of brief experiments further examines the PUF’s robustness towards real life conditions. This approach might be useful for secure identification and authentication of components or a label-free tracking. |
---|