Cargando…

Seed dormancy-life form profile for 358 species from the Xishuangbanna seasonal tropical rainforest, Yunnan Province, China compared to world database

Seed dormancy profiles are available for the major vegetation regions/types on earth. These were constructed using a composite of data from locations within each region. Furthermore, the proportion of species with nondormant (ND) seeds and the five classes of dormancy is available for each life form...

Descripción completa

Detalles Bibliográficos
Autores principales: Lan, Qinying, Yin, Shouhua, He, Huiyin, Tan, Yunhong, Liu, Qiang, Xia, Yongmei, Wen, Bin, Baskin, Carol C., Baskin, Jerry M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856844/
https://www.ncbi.nlm.nih.gov/pubmed/29549277
http://dx.doi.org/10.1038/s41598-018-22930-5
Descripción
Sumario:Seed dormancy profiles are available for the major vegetation regions/types on earth. These were constructed using a composite of data from locations within each region. Furthermore, the proportion of species with nondormant (ND) seeds and the five classes of dormancy is available for each life form in each region. Using these data, we asked: will the results be the same if many species from a specific area as opposed to data compiled from many locationsare considered? Germination was tested for fresh seeds of 358 species in 95 families from the Xishuangbanna seasonal tropical rainforest (XSTRF): 177 trees, 66 shrubs, 57 vines and 58 herbs. Seeds of 12.3% of the species were ND, and 0.3, 14.8, 60.6, 12.0 and 0% of the species had morphological (MD), morphophysiological (MPD), physiological (PD), physical (PY), and combinational (PY + PD) dormancy, respectively. PD was more important than ND in all life forms, PY was highest in shrubs, MD was not important in any life form and MPD was most common for herb and vines. The seed dormancy profile for XSTRF differs considerably from the composite profile for this vegetation type worldwide, most obviously in ND being much lower and PD much higher in XSTRF.