Cargando…
Approximation properties of λ-Bernstein operators
In this paper, we introduce a new type λ-Bernstein operators with parameter [Formula: see text] , we investigate a Korovkin type approximation theorem, establish a local approximation theorem, give a convergence theorem for the Lipschitz continuous functions, we also obtain a Voronovskaja-type asymp...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856904/ https://www.ncbi.nlm.nih.gov/pubmed/29576718 http://dx.doi.org/10.1186/s13660-018-1653-7 |
_version_ | 1783307366771458048 |
---|---|
author | Cai, Qing-Bo Lian, Bo-Yong Zhou, Guorong |
author_facet | Cai, Qing-Bo Lian, Bo-Yong Zhou, Guorong |
author_sort | Cai, Qing-Bo |
collection | PubMed |
description | In this paper, we introduce a new type λ-Bernstein operators with parameter [Formula: see text] , we investigate a Korovkin type approximation theorem, establish a local approximation theorem, give a convergence theorem for the Lipschitz continuous functions, we also obtain a Voronovskaja-type asymptotic formula. Finally, we give some graphs and numerical examples to show the convergence of [Formula: see text] to [Formula: see text] , and we see that in some cases the errors are smaller than [Formula: see text] to f. |
format | Online Article Text |
id | pubmed-5856904 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-58569042018-03-21 Approximation properties of λ-Bernstein operators Cai, Qing-Bo Lian, Bo-Yong Zhou, Guorong J Inequal Appl Research In this paper, we introduce a new type λ-Bernstein operators with parameter [Formula: see text] , we investigate a Korovkin type approximation theorem, establish a local approximation theorem, give a convergence theorem for the Lipschitz continuous functions, we also obtain a Voronovskaja-type asymptotic formula. Finally, we give some graphs and numerical examples to show the convergence of [Formula: see text] to [Formula: see text] , and we see that in some cases the errors are smaller than [Formula: see text] to f. Springer International Publishing 2018-03-16 2018 /pmc/articles/PMC5856904/ /pubmed/29576718 http://dx.doi.org/10.1186/s13660-018-1653-7 Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Cai, Qing-Bo Lian, Bo-Yong Zhou, Guorong Approximation properties of λ-Bernstein operators |
title | Approximation properties of λ-Bernstein operators |
title_full | Approximation properties of λ-Bernstein operators |
title_fullStr | Approximation properties of λ-Bernstein operators |
title_full_unstemmed | Approximation properties of λ-Bernstein operators |
title_short | Approximation properties of λ-Bernstein operators |
title_sort | approximation properties of λ-bernstein operators |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856904/ https://www.ncbi.nlm.nih.gov/pubmed/29576718 http://dx.doi.org/10.1186/s13660-018-1653-7 |
work_keys_str_mv | AT caiqingbo approximationpropertiesoflbernsteinoperators AT lianboyong approximationpropertiesoflbernsteinoperators AT zhouguorong approximationpropertiesoflbernsteinoperators |