Cargando…
Usage, Acceptability, and Effectiveness of an Activity Tracker in a Randomized Trial of a Workplace Sitting Intervention: Mixed-Methods Evaluation
BACKGROUND: Wearable activity trackers are now a common feature of workplace wellness programs; however, their ability to impact sitting time (the behavior in which most of the desk-based workday is spent) is relatively unknown. This study evaluated the LUMOback, an activity tracker that targets sit...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856932/ https://www.ncbi.nlm.nih.gov/pubmed/29500158 http://dx.doi.org/10.2196/ijmr.9001 |
Sumario: | BACKGROUND: Wearable activity trackers are now a common feature of workplace wellness programs; however, their ability to impact sitting time (the behavior in which most of the desk-based workday is spent) is relatively unknown. This study evaluated the LUMOback, an activity tracker that targets sitting time, as part of a cluster-randomized workplace sitting intervention in desk-based office workers. OBJECTIVE: Study objectives were to explore: (1) office workers’ self-directed LUMOback use, (2) individual-level characteristics associated with LUMOback use, (3) the impact of LUMOback use on activity and sitting behaviors, and (4) office workers’ perceived LUMOback acceptability. METHODS: Exploratory analyses were conducted within the activity tracker intervention group (n=66) of a 2-arm cluster-randomized trial (n=153) with follow-up at 3 and 12 months. The intervention, delivered from within the workplace, consisted of organizational support strategies (eg, manager support, emails) to stand up, sit less, and move more, plus the provision of a LUMOback activity tracker. The LUMOback, worn belted around the waist, provides real-time sitting feedback through a mobile app. LUMOback usage data (n=62), Web-based questionnaires (n=33), activPAL-assessed sitting, prolonged (≥30 min bouts) and nonprolonged (<30 min bouts) sitting, standing and stepping time (7-day, 24 h/day protocol; n=40), and telephone interviews (n=27) were used to evaluate study aims. LUMOback usage data were downloaded and described. Associations between user characteristics and LUMOback usage (in the first 3 months) were analyzed using zero-inflated negative binomial models. Associations between LUMOback usage and 3-month activity outcomes were analyzed using mixed models, correcting for cluster. LUMOback acceptability was explored using 3-month questionnaire data and thematic analysis of telephone interviews (conducted 6 to 10 months post intervention commencement). RESULTS: Tracker uptake was modest (43/61, 70%), and among users, usage over the first 3 months was low (1-48 days, median 8). Usage was greatest among team leaders and those with low self-perceived scores for job control and supervisor relationships. Greater tracker use (≥5 days vs <5 days) was significantly associated only with changes in prolonged unbroken sitting (−50.7 min/16 h; 95% CI −94.0 to −7.3; P=.02) during all waking hours, and changes in nonprolonged sitting (+32.5 min/10 h; 95% CI 5.0 to 59.9; P=.02) during work hours. Participants found the LUMOback easy to use but only somewhat comfortable. Qualitatively, participants valued the real-time app feedback. Nonuptake was attributed to being busy and setup issues. Low usage was attributed to discomfort wearing the LUMOback. CONCLUSIONS: The LUMOback—although able to reduce prolonged sitting time—was only used to a limited extent, and its low usage may provide a partial explanation for the limited behavior changes that occurred. Discomfort limited the feasibility of the LUMOback for ongoing use. Such findings yield insight into how to improve upon implementing activity trackers in workplace settings. |
---|