Cargando…

Renewable poly(δ-decalactone) based block copolymer micelles as drug delivery vehicle: in vitro and in vivo evaluation

Polymers from natural resources are attracting much attention in various fields including drug delivery as green alternatives to fossil fuel based polymers. In this quest, novel block copolymers based on renewable poly(δ-decalactone) (PDL) were evaluated for their drug delivery capabilities and comp...

Descripción completa

Detalles Bibliográficos
Autores principales: Bansal, Kuldeep K., Gupta, Jitendra, Rosling, Ari, Rosenholm, Jessica M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856948/
https://www.ncbi.nlm.nih.gov/pubmed/29556127
http://dx.doi.org/10.1016/j.jsps.2018.01.006
_version_ 1783307377084203008
author Bansal, Kuldeep K.
Gupta, Jitendra
Rosling, Ari
Rosenholm, Jessica M.
author_facet Bansal, Kuldeep K.
Gupta, Jitendra
Rosling, Ari
Rosenholm, Jessica M.
author_sort Bansal, Kuldeep K.
collection PubMed
description Polymers from natural resources are attracting much attention in various fields including drug delivery as green alternatives to fossil fuel based polymers. In this quest, novel block copolymers based on renewable poly(δ-decalactone) (PDL) were evaluated for their drug delivery capabilities and compared with a fossil fuel based polymer i.e. methoxy-poly(ethylene glycol)-b-poly(ε-caprolactone) (mPEG-b-PCL). Using curcumin as a hydrophobic drug model, micelles of PDL block copolymers with different orientation i.e. AB (mPEG-b-PDL), ABA (PDL-b-PEG-b-PDL), ABC (mPEG-b-PDL-b-poly(pentadecalactone) and (mPEG-b-PCL) were prepared by nanoprecipitation method. The size, drug loading and curcumin stability studies results indicated that mPEG-b-PDL micelles was comparable to its counterpart mPEG-b-PCL micelles towards improved delivery of curcumin. Therefore, mixed micelles using these two copolymers were also evaluated to see any change in size, loading and drug release. Drug release studies proposed that sustained release can be obtained using poly(pentadecalactone) as crystalline core whereas rapid release can be achieved using amorphous PDL core. Further, mPEG-b-PDL micelles were found to be non-haemolytic, up to the concentration of 40 mg/mL. In vivo toxicity studies on rats advised low-toxic behaviour of these micelles up to 400 mg/kg dose, as evident by histopathological and biochemical analysis. In summary, it is anticipated that mPEG-b-PDL block copolymer micelles could serve as a renewable alternative for mPEG-b-PCL copolymers in drug delivery applications.
format Online
Article
Text
id pubmed-5856948
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-58569482018-03-19 Renewable poly(δ-decalactone) based block copolymer micelles as drug delivery vehicle: in vitro and in vivo evaluation Bansal, Kuldeep K. Gupta, Jitendra Rosling, Ari Rosenholm, Jessica M. Saudi Pharm J Article Polymers from natural resources are attracting much attention in various fields including drug delivery as green alternatives to fossil fuel based polymers. In this quest, novel block copolymers based on renewable poly(δ-decalactone) (PDL) were evaluated for their drug delivery capabilities and compared with a fossil fuel based polymer i.e. methoxy-poly(ethylene glycol)-b-poly(ε-caprolactone) (mPEG-b-PCL). Using curcumin as a hydrophobic drug model, micelles of PDL block copolymers with different orientation i.e. AB (mPEG-b-PDL), ABA (PDL-b-PEG-b-PDL), ABC (mPEG-b-PDL-b-poly(pentadecalactone) and (mPEG-b-PCL) were prepared by nanoprecipitation method. The size, drug loading and curcumin stability studies results indicated that mPEG-b-PDL micelles was comparable to its counterpart mPEG-b-PCL micelles towards improved delivery of curcumin. Therefore, mixed micelles using these two copolymers were also evaluated to see any change in size, loading and drug release. Drug release studies proposed that sustained release can be obtained using poly(pentadecalactone) as crystalline core whereas rapid release can be achieved using amorphous PDL core. Further, mPEG-b-PDL micelles were found to be non-haemolytic, up to the concentration of 40 mg/mL. In vivo toxicity studies on rats advised low-toxic behaviour of these micelles up to 400 mg/kg dose, as evident by histopathological and biochemical analysis. In summary, it is anticipated that mPEG-b-PDL block copolymer micelles could serve as a renewable alternative for mPEG-b-PCL copolymers in drug delivery applications. Elsevier 2018-03 2018-02-01 /pmc/articles/PMC5856948/ /pubmed/29556127 http://dx.doi.org/10.1016/j.jsps.2018.01.006 Text en © 2018 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Bansal, Kuldeep K.
Gupta, Jitendra
Rosling, Ari
Rosenholm, Jessica M.
Renewable poly(δ-decalactone) based block copolymer micelles as drug delivery vehicle: in vitro and in vivo evaluation
title Renewable poly(δ-decalactone) based block copolymer micelles as drug delivery vehicle: in vitro and in vivo evaluation
title_full Renewable poly(δ-decalactone) based block copolymer micelles as drug delivery vehicle: in vitro and in vivo evaluation
title_fullStr Renewable poly(δ-decalactone) based block copolymer micelles as drug delivery vehicle: in vitro and in vivo evaluation
title_full_unstemmed Renewable poly(δ-decalactone) based block copolymer micelles as drug delivery vehicle: in vitro and in vivo evaluation
title_short Renewable poly(δ-decalactone) based block copolymer micelles as drug delivery vehicle: in vitro and in vivo evaluation
title_sort renewable poly(δ-decalactone) based block copolymer micelles as drug delivery vehicle: in vitro and in vivo evaluation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856948/
https://www.ncbi.nlm.nih.gov/pubmed/29556127
http://dx.doi.org/10.1016/j.jsps.2018.01.006
work_keys_str_mv AT bansalkuldeepk renewablepolyddecalactonebasedblockcopolymermicellesasdrugdeliveryvehicleinvitroandinvivoevaluation
AT guptajitendra renewablepolyddecalactonebasedblockcopolymermicellesasdrugdeliveryvehicleinvitroandinvivoevaluation
AT roslingari renewablepolyddecalactonebasedblockcopolymermicellesasdrugdeliveryvehicleinvitroandinvivoevaluation
AT rosenholmjessicam renewablepolyddecalactonebasedblockcopolymermicellesasdrugdeliveryvehicleinvitroandinvivoevaluation