Cargando…
Application of feature selection methods for automated clustering analysis: a review on synthetic datasets
The effective modelling of high-dimensional data with hundreds to thousands of features remains a challenging task in the field of machine learning. This process is a manually intensive task and requires skilled data scientists to apply exploratory data analysis techniques and statistical methods in...
Autores principales: | Ahmad, Aliyu Usman, Starkey, Andrew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5857284/ https://www.ncbi.nlm.nih.gov/pubmed/29576689 http://dx.doi.org/10.1007/s00521-017-3005-9 |
Ejemplares similares
-
New aspects of the elastic net algorithm for cluster analysis
por: Lévano, Marcos, et al.
Publicado: (2010) -
Deep imitation learning for 3D navigation tasks
por: Hussein, Ahmed, et al.
Publicado: (2017) -
Soda Pop: A Time-Series Clustering, Alarming and Disease Forecasting
Application
por: Rounds, Jeremiah, et al.
Publicado: (2017) -
A Spatial Biosurveillance Synthetic Data Generator in
R
por: Levin, Drew, et al.
Publicado: (2017) -
Epi Archive: automated data collection of notifiable disease
data
por: Generous, Nicholas, et al.
Publicado: (2017)