Cargando…

Deep imitation learning for 3D navigation tasks

Deep learning techniques have shown success in learning from raw high-dimensional data in various applications. While deep reinforcement learning is recently gaining popularity as a method to train intelligent agents, utilizing deep learning in imitation learning has been scarcely explored. Imitatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Hussein, Ahmed, Elyan, Eyad, Gaber, Mohamed Medhat, Jayne, Chrisina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer London 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5857289/
https://www.ncbi.nlm.nih.gov/pubmed/29576690
http://dx.doi.org/10.1007/s00521-017-3241-z
_version_ 1783307442662146048
author Hussein, Ahmed
Elyan, Eyad
Gaber, Mohamed Medhat
Jayne, Chrisina
author_facet Hussein, Ahmed
Elyan, Eyad
Gaber, Mohamed Medhat
Jayne, Chrisina
author_sort Hussein, Ahmed
collection PubMed
description Deep learning techniques have shown success in learning from raw high-dimensional data in various applications. While deep reinforcement learning is recently gaining popularity as a method to train intelligent agents, utilizing deep learning in imitation learning has been scarcely explored. Imitation learning can be an efficient method to teach intelligent agents by providing a set of demonstrations to learn from. However, generalizing to situations that are not represented in the demonstrations can be challenging, especially in 3D environments. In this paper, we propose a deep imitation learning method to learn navigation tasks from demonstrations in a 3D environment. The supervised policy is refined using active learning in order to generalize to unseen situations. This approach is compared to two popular deep reinforcement learning techniques: deep-Q-networks and Asynchronous actor-critic (A3C). The proposed method as well as the reinforcement learning methods employ deep convolutional neural networks and learn directly from raw visual input. Methods for combining learning from demonstrations and experience are also investigated. This combination aims to join the generalization ability of learning by experience with the efficiency of learning by imitation. The proposed methods are evaluated on 4 navigation tasks in a 3D simulated environment. Navigation tasks are a typical problem that is relevant to many real applications. They pose the challenge of requiring demonstrations of long trajectories to reach the target and only providing delayed rewards (usually terminal) to the agent. The experiments show that the proposed method can successfully learn navigation tasks from raw visual input while learning from experience methods fail to learn an effective policy. Moreover, it is shown that active learning can significantly improve the performance of the initially learned policy using a small number of active samples.
format Online
Article
Text
id pubmed-5857289
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Springer London
record_format MEDLINE/PubMed
spelling pubmed-58572892018-03-21 Deep imitation learning for 3D navigation tasks Hussein, Ahmed Elyan, Eyad Gaber, Mohamed Medhat Jayne, Chrisina Neural Comput Appl S.i. : Eann 2016 Deep learning techniques have shown success in learning from raw high-dimensional data in various applications. While deep reinforcement learning is recently gaining popularity as a method to train intelligent agents, utilizing deep learning in imitation learning has been scarcely explored. Imitation learning can be an efficient method to teach intelligent agents by providing a set of demonstrations to learn from. However, generalizing to situations that are not represented in the demonstrations can be challenging, especially in 3D environments. In this paper, we propose a deep imitation learning method to learn navigation tasks from demonstrations in a 3D environment. The supervised policy is refined using active learning in order to generalize to unseen situations. This approach is compared to two popular deep reinforcement learning techniques: deep-Q-networks and Asynchronous actor-critic (A3C). The proposed method as well as the reinforcement learning methods employ deep convolutional neural networks and learn directly from raw visual input. Methods for combining learning from demonstrations and experience are also investigated. This combination aims to join the generalization ability of learning by experience with the efficiency of learning by imitation. The proposed methods are evaluated on 4 navigation tasks in a 3D simulated environment. Navigation tasks are a typical problem that is relevant to many real applications. They pose the challenge of requiring demonstrations of long trajectories to reach the target and only providing delayed rewards (usually terminal) to the agent. The experiments show that the proposed method can successfully learn navigation tasks from raw visual input while learning from experience methods fail to learn an effective policy. Moreover, it is shown that active learning can significantly improve the performance of the initially learned policy using a small number of active samples. Springer London 2017-12-04 2018 /pmc/articles/PMC5857289/ /pubmed/29576690 http://dx.doi.org/10.1007/s00521-017-3241-z Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use,distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle S.i. : Eann 2016
Hussein, Ahmed
Elyan, Eyad
Gaber, Mohamed Medhat
Jayne, Chrisina
Deep imitation learning for 3D navigation tasks
title Deep imitation learning for 3D navigation tasks
title_full Deep imitation learning for 3D navigation tasks
title_fullStr Deep imitation learning for 3D navigation tasks
title_full_unstemmed Deep imitation learning for 3D navigation tasks
title_short Deep imitation learning for 3D navigation tasks
title_sort deep imitation learning for 3d navigation tasks
topic S.i. : Eann 2016
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5857289/
https://www.ncbi.nlm.nih.gov/pubmed/29576690
http://dx.doi.org/10.1007/s00521-017-3241-z
work_keys_str_mv AT husseinahmed deepimitationlearningfor3dnavigationtasks
AT elyaneyad deepimitationlearningfor3dnavigationtasks
AT gabermohamedmedhat deepimitationlearningfor3dnavigationtasks
AT jaynechrisina deepimitationlearningfor3dnavigationtasks