Cargando…
Transcriptional changes when Myxococcus xanthus preys on Escherichia coli suggest myxobacterial predators are constitutively toxic but regulate their feeding
Predation is a fundamental ecological process, but within most microbial ecosystems the molecular mechanisms of predation remain poorly understood. We investigated transcriptome changes associated with the predation of Escherichia coli by the myxobacterium Myxococcus xanthus using mRNA sequencing. E...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Microbiology Society
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5857379/ https://www.ncbi.nlm.nih.gov/pubmed/29345219 http://dx.doi.org/10.1099/mgen.0.000152 |
_version_ | 1783307460828725248 |
---|---|
author | Livingstone, Paul G. Millard, Andrew D. Swain, Martin T. Whitworth, David E. |
author_facet | Livingstone, Paul G. Millard, Andrew D. Swain, Martin T. Whitworth, David E. |
author_sort | Livingstone, Paul G. |
collection | PubMed |
description | Predation is a fundamental ecological process, but within most microbial ecosystems the molecular mechanisms of predation remain poorly understood. We investigated transcriptome changes associated with the predation of Escherichia coli by the myxobacterium Myxococcus xanthus using mRNA sequencing. Exposure to pre-killed prey significantly altered expression of 1319 predator genes. However, the transcriptional response to living prey was minimal, with only 12 genes being significantly up-regulated. The genes most induced by prey presence (kdpA and kdpB, members of the kdp regulon) were confirmed by reverse transcriptase quantitative PCR to be regulated by osmotic shock in M. xanthus, suggesting indirect sensing of prey. However, the prey showed extensive transcriptome changes when co-cultured with predator, with 40 % of its genes (1534) showing significant changes in expression. Bacteriolytic M. xanthus culture supernatant and secreted outer membrane vesicles (OMVs) also induced changes in expression of large numbers of prey genes (598 and 461, respectively). Five metabolic pathways were significantly enriched in prey genes up-regulated on exposure to OMVs, supernatant and/or predatory cells, including those for ribosome and lipopolysaccharide production, suggesting that the prey cell wall and protein production are primary targets of the predator’s attack. Our data suggest a model of the myxobacterial predatome (genes and proteins associated with predation) in which the predator constitutively produces secretions which disable its prey whilst simultaneously generating a signal that prey is present. That signal then triggers a regulated feeding response in the predator. |
format | Online Article Text |
id | pubmed-5857379 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Microbiology Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-58573792018-04-05 Transcriptional changes when Myxococcus xanthus preys on Escherichia coli suggest myxobacterial predators are constitutively toxic but regulate their feeding Livingstone, Paul G. Millard, Andrew D. Swain, Martin T. Whitworth, David E. Microb Genom Research Article Predation is a fundamental ecological process, but within most microbial ecosystems the molecular mechanisms of predation remain poorly understood. We investigated transcriptome changes associated with the predation of Escherichia coli by the myxobacterium Myxococcus xanthus using mRNA sequencing. Exposure to pre-killed prey significantly altered expression of 1319 predator genes. However, the transcriptional response to living prey was minimal, with only 12 genes being significantly up-regulated. The genes most induced by prey presence (kdpA and kdpB, members of the kdp regulon) were confirmed by reverse transcriptase quantitative PCR to be regulated by osmotic shock in M. xanthus, suggesting indirect sensing of prey. However, the prey showed extensive transcriptome changes when co-cultured with predator, with 40 % of its genes (1534) showing significant changes in expression. Bacteriolytic M. xanthus culture supernatant and secreted outer membrane vesicles (OMVs) also induced changes in expression of large numbers of prey genes (598 and 461, respectively). Five metabolic pathways were significantly enriched in prey genes up-regulated on exposure to OMVs, supernatant and/or predatory cells, including those for ribosome and lipopolysaccharide production, suggesting that the prey cell wall and protein production are primary targets of the predator’s attack. Our data suggest a model of the myxobacterial predatome (genes and proteins associated with predation) in which the predator constitutively produces secretions which disable its prey whilst simultaneously generating a signal that prey is present. That signal then triggers a regulated feeding response in the predator. Microbiology Society 2018-01-18 /pmc/articles/PMC5857379/ /pubmed/29345219 http://dx.doi.org/10.1099/mgen.0.000152 Text en © 2018 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Livingstone, Paul G. Millard, Andrew D. Swain, Martin T. Whitworth, David E. Transcriptional changes when Myxococcus xanthus preys on Escherichia coli suggest myxobacterial predators are constitutively toxic but regulate their feeding |
title | Transcriptional changes when Myxococcus xanthus preys on Escherichia coli suggest myxobacterial predators are constitutively toxic but regulate their feeding |
title_full | Transcriptional changes when Myxococcus xanthus preys on Escherichia coli suggest myxobacterial predators are constitutively toxic but regulate their feeding |
title_fullStr | Transcriptional changes when Myxococcus xanthus preys on Escherichia coli suggest myxobacterial predators are constitutively toxic but regulate their feeding |
title_full_unstemmed | Transcriptional changes when Myxococcus xanthus preys on Escherichia coli suggest myxobacterial predators are constitutively toxic but regulate their feeding |
title_short | Transcriptional changes when Myxococcus xanthus preys on Escherichia coli suggest myxobacterial predators are constitutively toxic but regulate their feeding |
title_sort | transcriptional changes when myxococcus xanthus preys on escherichia coli suggest myxobacterial predators are constitutively toxic but regulate their feeding |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5857379/ https://www.ncbi.nlm.nih.gov/pubmed/29345219 http://dx.doi.org/10.1099/mgen.0.000152 |
work_keys_str_mv | AT livingstonepaulg transcriptionalchangeswhenmyxococcusxanthuspreysonescherichiacolisuggestmyxobacterialpredatorsareconstitutivelytoxicbutregulatetheirfeeding AT millardandrewd transcriptionalchangeswhenmyxococcusxanthuspreysonescherichiacolisuggestmyxobacterialpredatorsareconstitutivelytoxicbutregulatetheirfeeding AT swainmartint transcriptionalchangeswhenmyxococcusxanthuspreysonescherichiacolisuggestmyxobacterialpredatorsareconstitutivelytoxicbutregulatetheirfeeding AT whitworthdavide transcriptionalchangeswhenmyxococcusxanthuspreysonescherichiacolisuggestmyxobacterialpredatorsareconstitutivelytoxicbutregulatetheirfeeding |