Cargando…

Effect of squatting velocity on hip muscle latency in women with patellofemoral pain syndrome

[Purpose] Neuromuscular activity has been evaluated in patellofemoral pain syndrome but movement velocity has not been considered. The aim was to determine differences in onset latency of hip and knee muscles between individuals with and without patellofemoral pain syndrome during a single leg squat...

Descripción completa

Detalles Bibliográficos
Autores principales: Orozco-Chavez, Ignacio, Mendez-Rebolledo, Guillermo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Society of Physical Therapy Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5857442/
https://www.ncbi.nlm.nih.gov/pubmed/29581655
http://dx.doi.org/10.1589/jpts.30.381
Descripción
Sumario:[Purpose] Neuromuscular activity has been evaluated in patellofemoral pain syndrome but movement velocity has not been considered. The aim was to determine differences in onset latency of hip and knee muscles between individuals with and without patellofemoral pain syndrome during a single leg squat, and whether any differences are dependent on movement velocity. [Subjects and Methods] Twenty-four females with patellofemoral pain syndrome and 24 healthy females participated. Onset latency of gluteus maximus, anterior and posterior gluteus medius, rectus femoris, vastus medialis, vastus lateralis and biceps femoris during a single leg squat at high and low velocity were evaluated. [Results] There was an interaction between velocity and diagnosis for posterior gluteus medius. Healthy subjects showed a later posterior gluteus medius onset latency at low velocity than high velocity; and also later than patellofemoral pain syndrome subjects at low velocity and high velocity. [Conclusion] Patellofemoral pain syndrome subjects presented an altered latency of posterior gluteus medius during a single leg squat and did not generate adaptations to velocity variation, while healthy subjects presented an earlier onset latency in response to velocity increase.