Cargando…
General Considerations for Improving Photovoltage in Metal–Insulator–Semiconductor Photoanodes
[Image: see text] Metal–insulator–semiconductor (MIS) photoelectrodes offer a simple alternative to the traditional semiconductor–liquid junction and the conventional p–n junction electrode. Highly efficient MIS photoanodes require interfacial surface passivating oxides and high workfunction metals...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5857922/ https://www.ncbi.nlm.nih.gov/pubmed/29568340 http://dx.doi.org/10.1021/acs.jpcc.7b11747 |
Sumario: | [Image: see text] Metal–insulator–semiconductor (MIS) photoelectrodes offer a simple alternative to the traditional semiconductor–liquid junction and the conventional p–n junction electrode. Highly efficient MIS photoanodes require interfacial surface passivating oxides and high workfunction metals to produce a high photovoltage. Herein, we investigate and analyze the effect of interfacial oxides and metal workfunctions on the barrier height and the photovoltage of a c-Si photoanode. We use two metal components in a bimetal contact configuration and observe the modulation of the effective barrier height and the resulting photovoltage as a function of the secondary outer metal. The photovoltage shows a strong linear dependence by increasing the inner metal workfunction, with the highest photovoltage achieved by a MIS photoanode using a platinum inner metal. We also found that coupling a thin aluminium oxide with an interfacial silicon oxide and controlling the oxide thickness can significantly improve the photovoltage of an MIS junction photoanode. |
---|