Cargando…
Comparative Analysis of Major Mosquito Vectors Response to Seed-Derived Essential Oil and Seed Pod-Derived Extract from Acacia nilotica
Botanical metabolites are increasingly realized as potential replacements to chemical insecticides. In the present study, Acacia nilotica seed essential oil and seed pod solvent extracts were tested for bioefficacy against three important types of mosquitoes. Mortality was recorded 24 h post-treatme...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5858457/ https://www.ncbi.nlm.nih.gov/pubmed/29473901 http://dx.doi.org/10.3390/ijerph15020388 |
_version_ | 1783307665118593024 |
---|---|
author | Vivekanandhan, Perumal Venkatesan, Raji Ramkumar, Govindaraju Karthi, Sengodan Senthil-Nathan, Sengottayan Shivakumar, Muthugoundar Subramanian |
author_facet | Vivekanandhan, Perumal Venkatesan, Raji Ramkumar, Govindaraju Karthi, Sengodan Senthil-Nathan, Sengottayan Shivakumar, Muthugoundar Subramanian |
author_sort | Vivekanandhan, Perumal |
collection | PubMed |
description | Botanical metabolites are increasingly realized as potential replacements to chemical insecticides. In the present study, Acacia nilotica seed essential oil and seed pod solvent extracts were tested for bioefficacy against three important types of mosquitoes. Mortality was recorded 24 h post-treatment, while smoke toxicity of adult mosquitoes was recorded at 10 min intervals for 40 min. Seed pod powder was extracted with different solvents and hydrodistilled seed oil chemical constituents were determined by using Gas chromatography mass spectroscopy (GC-MS) -. Larvicidal and adulticidal efficacy of seed hydrodistilled essential oil and solvent extracts were tested against larval and adult mosquitoes. The seed hydrodistilled oil provided strong larvicidal activity against Anopheles stephensi, (LC50 (lethal concentration that kills 50% of the exposed larvae) = 5.239, LC90 (lethal concentration that kills 90% of the exposed larvae) = 9.713 mg/L); Aedes aegypti, (LC50 = 3.174, LC90 = 11.739 mg/L); and Culex quinquefasciatus, (LC50 = 4.112, LC90 = 12.325 mg/L). Smoke toxicities were 82% in Cx. quinquefasciatus, 90% in Ae. aegypti, and 80% mortality in An. stephensi adults, whereas 100% mortality was recorded for commercial mosquito coil. The GC-MS profile of seed essential oil from A. nilotica showed the presence of hexadecane (18.440%) and heptacosane (15.914%), which are the main and active compounds, and which may be involved in insecticidal activity. Overall findings suggest that the seed oil showed strong mosquitocidal activity against mosquito vectors and therefore may provide an ecofriendly replacement to chemical insecticides. |
format | Online Article Text |
id | pubmed-5858457 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-58584572018-03-19 Comparative Analysis of Major Mosquito Vectors Response to Seed-Derived Essential Oil and Seed Pod-Derived Extract from Acacia nilotica Vivekanandhan, Perumal Venkatesan, Raji Ramkumar, Govindaraju Karthi, Sengodan Senthil-Nathan, Sengottayan Shivakumar, Muthugoundar Subramanian Int J Environ Res Public Health Article Botanical metabolites are increasingly realized as potential replacements to chemical insecticides. In the present study, Acacia nilotica seed essential oil and seed pod solvent extracts were tested for bioefficacy against three important types of mosquitoes. Mortality was recorded 24 h post-treatment, while smoke toxicity of adult mosquitoes was recorded at 10 min intervals for 40 min. Seed pod powder was extracted with different solvents and hydrodistilled seed oil chemical constituents were determined by using Gas chromatography mass spectroscopy (GC-MS) -. Larvicidal and adulticidal efficacy of seed hydrodistilled essential oil and solvent extracts were tested against larval and adult mosquitoes. The seed hydrodistilled oil provided strong larvicidal activity against Anopheles stephensi, (LC50 (lethal concentration that kills 50% of the exposed larvae) = 5.239, LC90 (lethal concentration that kills 90% of the exposed larvae) = 9.713 mg/L); Aedes aegypti, (LC50 = 3.174, LC90 = 11.739 mg/L); and Culex quinquefasciatus, (LC50 = 4.112, LC90 = 12.325 mg/L). Smoke toxicities were 82% in Cx. quinquefasciatus, 90% in Ae. aegypti, and 80% mortality in An. stephensi adults, whereas 100% mortality was recorded for commercial mosquito coil. The GC-MS profile of seed essential oil from A. nilotica showed the presence of hexadecane (18.440%) and heptacosane (15.914%), which are the main and active compounds, and which may be involved in insecticidal activity. Overall findings suggest that the seed oil showed strong mosquitocidal activity against mosquito vectors and therefore may provide an ecofriendly replacement to chemical insecticides. MDPI 2018-02-23 2018-02 /pmc/articles/PMC5858457/ /pubmed/29473901 http://dx.doi.org/10.3390/ijerph15020388 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Vivekanandhan, Perumal Venkatesan, Raji Ramkumar, Govindaraju Karthi, Sengodan Senthil-Nathan, Sengottayan Shivakumar, Muthugoundar Subramanian Comparative Analysis of Major Mosquito Vectors Response to Seed-Derived Essential Oil and Seed Pod-Derived Extract from Acacia nilotica |
title | Comparative Analysis of Major Mosquito Vectors Response to Seed-Derived Essential Oil and Seed Pod-Derived Extract from Acacia nilotica |
title_full | Comparative Analysis of Major Mosquito Vectors Response to Seed-Derived Essential Oil and Seed Pod-Derived Extract from Acacia nilotica |
title_fullStr | Comparative Analysis of Major Mosquito Vectors Response to Seed-Derived Essential Oil and Seed Pod-Derived Extract from Acacia nilotica |
title_full_unstemmed | Comparative Analysis of Major Mosquito Vectors Response to Seed-Derived Essential Oil and Seed Pod-Derived Extract from Acacia nilotica |
title_short | Comparative Analysis of Major Mosquito Vectors Response to Seed-Derived Essential Oil and Seed Pod-Derived Extract from Acacia nilotica |
title_sort | comparative analysis of major mosquito vectors response to seed-derived essential oil and seed pod-derived extract from acacia nilotica |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5858457/ https://www.ncbi.nlm.nih.gov/pubmed/29473901 http://dx.doi.org/10.3390/ijerph15020388 |
work_keys_str_mv | AT vivekanandhanperumal comparativeanalysisofmajormosquitovectorsresponsetoseedderivedessentialoilandseedpodderivedextractfromacacianilotica AT venkatesanraji comparativeanalysisofmajormosquitovectorsresponsetoseedderivedessentialoilandseedpodderivedextractfromacacianilotica AT ramkumargovindaraju comparativeanalysisofmajormosquitovectorsresponsetoseedderivedessentialoilandseedpodderivedextractfromacacianilotica AT karthisengodan comparativeanalysisofmajormosquitovectorsresponsetoseedderivedessentialoilandseedpodderivedextractfromacacianilotica AT senthilnathansengottayan comparativeanalysisofmajormosquitovectorsresponsetoseedderivedessentialoilandseedpodderivedextractfromacacianilotica AT shivakumarmuthugoundarsubramanian comparativeanalysisofmajormosquitovectorsresponsetoseedderivedessentialoilandseedpodderivedextractfromacacianilotica |