Cargando…

Eight-hours adaptive deep brain stimulation in patients with Parkinson disease

OBJECTIVES: To assess the feasibility and clinical efficacy of local field potentials (LFPs)–based adaptive deep brain stimulation (aDBS) in patients with advanced Parkinson disease (PD) during daily activities in an open-label, nonblinded study. METHODS: We monitored neurophysiologic and clinical f...

Descripción completa

Detalles Bibliográficos
Autores principales: Arlotti, Mattia, Marceglia, Sara, Foffani, Guglielmo, Volkmann, Jens, Lozano, Andres M., Moro, Elena, Cogiamanian, Filippo, Prenassi, Marco, Bocci, Tommaso, Cortese, Francesca, Rampini, Paolo, Barbieri, Sergio, Priori, Alberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5858949/
https://www.ncbi.nlm.nih.gov/pubmed/29444973
http://dx.doi.org/10.1212/WNL.0000000000005121
Descripción
Sumario:OBJECTIVES: To assess the feasibility and clinical efficacy of local field potentials (LFPs)–based adaptive deep brain stimulation (aDBS) in patients with advanced Parkinson disease (PD) during daily activities in an open-label, nonblinded study. METHODS: We monitored neurophysiologic and clinical fluctuations during 2 perioperative experimental sessions lasting for up to 8 hours. On the first day, the patient took his/her daily medication, while on the second, he/she additionally underwent subthalamic nucleus aDBS driven by LFPs beta band power. RESULTS: The beta band power correlated in both experimental sessions with the patient's clinical state (Pearson correlation coefficient r = 0.506, p < 0.001, and r = 0.477, p < 0.001). aDBS after LFP changes was effective (30% improvement without medication [3-way analysis of variance, interaction day × medication p = 0.036; 30.5 ± 3.4 vs 22.2 ± 3.3, p = 0.003]), safe, and well tolerated in patients performing regular daily activities and taking additional dopaminergic medication. aDBS was able to decrease DBS amplitude during motor “on” states compared to “off” states (paired t test p = 0.046), and this automatic adjustment of STN-DBS prevented dyskinesias. CONCLUSIONS: The main findings of our study are that aDBS is technically feasible in everyday life and provides a safe, well-tolerated, and effective treatment method for the management of clinical fluctuations. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that for patients with advanced PD, aDBS is safe, well tolerated, and effective in controlling PD motor symptoms.