Cargando…
The Use of a Chimeric Rhodopsin Vector for the Detection of New Proteorhodopsins Based on Color
Student microbial ecology laboratory courses are often conducted as condensed courses in which theory and wet lab work are combined in a very intensive short time period. In last decades, the study of marine microbial ecology is increasingly reliant on molecular-based methods, and as a result many o...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5859045/ https://www.ncbi.nlm.nih.gov/pubmed/29593685 http://dx.doi.org/10.3389/fmicb.2018.00439 |
_version_ | 1783307738498990080 |
---|---|
author | Pushkarev, Alina Hevroni, Gur Roitman, Sheila Shim, Jin-gon Choi, Ahreum Jung, Kwang-Hwan Béjà, Oded |
author_facet | Pushkarev, Alina Hevroni, Gur Roitman, Sheila Shim, Jin-gon Choi, Ahreum Jung, Kwang-Hwan Béjà, Oded |
author_sort | Pushkarev, Alina |
collection | PubMed |
description | Student microbial ecology laboratory courses are often conducted as condensed courses in which theory and wet lab work are combined in a very intensive short time period. In last decades, the study of marine microbial ecology is increasingly reliant on molecular-based methods, and as a result many of the research projects conducted in such courses require sequencing that is often not available on site and may take more time than a typical course allows. In this work, we describe a protocol combining molecular and functional methods for analyzing proteorhodopsins (PRs), with visible results in only 4–5 days that do not rely on sequencing. PRs were discovered in oceanic surface waters two decades ago, and have since been observed in different marine environments and diverse taxa, including the abundant alphaproteobacterial SAR11 group. PR subgroups are currently known to absorb green and blue light, and their distribution was previously explained by prevailing light conditions – green pigments at the surface and blue pigments in deeper waters, as blue light travels deeper in the water column. To detect PR in environmental samples, we created a chimeric plasmid suitable for direct expression of PRs using PCR amplification and functional analysis in Escherichia coli cells. Using this assay, we discovered several exceptional cases of PRs whose phenotypes differed from those predicted based on sequence only, including a previously undescribed yellow-light absorbing PRs. We applied this assay in two 10-days marine microbiology courses and found it to greatly enhance students’ laboratory experience, enabling them to gain rapid visual feedback and colorful reward for their work. Furthermore we expect this assay to promote the use of functional assays for the discovery of new rhodopsin variants. |
format | Online Article Text |
id | pubmed-5859045 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-58590452018-03-28 The Use of a Chimeric Rhodopsin Vector for the Detection of New Proteorhodopsins Based on Color Pushkarev, Alina Hevroni, Gur Roitman, Sheila Shim, Jin-gon Choi, Ahreum Jung, Kwang-Hwan Béjà, Oded Front Microbiol Microbiology Student microbial ecology laboratory courses are often conducted as condensed courses in which theory and wet lab work are combined in a very intensive short time period. In last decades, the study of marine microbial ecology is increasingly reliant on molecular-based methods, and as a result many of the research projects conducted in such courses require sequencing that is often not available on site and may take more time than a typical course allows. In this work, we describe a protocol combining molecular and functional methods for analyzing proteorhodopsins (PRs), with visible results in only 4–5 days that do not rely on sequencing. PRs were discovered in oceanic surface waters two decades ago, and have since been observed in different marine environments and diverse taxa, including the abundant alphaproteobacterial SAR11 group. PR subgroups are currently known to absorb green and blue light, and their distribution was previously explained by prevailing light conditions – green pigments at the surface and blue pigments in deeper waters, as blue light travels deeper in the water column. To detect PR in environmental samples, we created a chimeric plasmid suitable for direct expression of PRs using PCR amplification and functional analysis in Escherichia coli cells. Using this assay, we discovered several exceptional cases of PRs whose phenotypes differed from those predicted based on sequence only, including a previously undescribed yellow-light absorbing PRs. We applied this assay in two 10-days marine microbiology courses and found it to greatly enhance students’ laboratory experience, enabling them to gain rapid visual feedback and colorful reward for their work. Furthermore we expect this assay to promote the use of functional assays for the discovery of new rhodopsin variants. Frontiers Media S.A. 2018-03-13 /pmc/articles/PMC5859045/ /pubmed/29593685 http://dx.doi.org/10.3389/fmicb.2018.00439 Text en Copyright © 2018 Pushkarev, Hevroni, Roitman, Shim, Choi, Jung and Béjà. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Pushkarev, Alina Hevroni, Gur Roitman, Sheila Shim, Jin-gon Choi, Ahreum Jung, Kwang-Hwan Béjà, Oded The Use of a Chimeric Rhodopsin Vector for the Detection of New Proteorhodopsins Based on Color |
title | The Use of a Chimeric Rhodopsin Vector for the Detection of New Proteorhodopsins Based on Color |
title_full | The Use of a Chimeric Rhodopsin Vector for the Detection of New Proteorhodopsins Based on Color |
title_fullStr | The Use of a Chimeric Rhodopsin Vector for the Detection of New Proteorhodopsins Based on Color |
title_full_unstemmed | The Use of a Chimeric Rhodopsin Vector for the Detection of New Proteorhodopsins Based on Color |
title_short | The Use of a Chimeric Rhodopsin Vector for the Detection of New Proteorhodopsins Based on Color |
title_sort | use of a chimeric rhodopsin vector for the detection of new proteorhodopsins based on color |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5859045/ https://www.ncbi.nlm.nih.gov/pubmed/29593685 http://dx.doi.org/10.3389/fmicb.2018.00439 |
work_keys_str_mv | AT pushkarevalina theuseofachimericrhodopsinvectorforthedetectionofnewproteorhodopsinsbasedoncolor AT hevronigur theuseofachimericrhodopsinvectorforthedetectionofnewproteorhodopsinsbasedoncolor AT roitmansheila theuseofachimericrhodopsinvectorforthedetectionofnewproteorhodopsinsbasedoncolor AT shimjingon theuseofachimericrhodopsinvectorforthedetectionofnewproteorhodopsinsbasedoncolor AT choiahreum theuseofachimericrhodopsinvectorforthedetectionofnewproteorhodopsinsbasedoncolor AT jungkwanghwan theuseofachimericrhodopsinvectorforthedetectionofnewproteorhodopsinsbasedoncolor AT bejaoded theuseofachimericrhodopsinvectorforthedetectionofnewproteorhodopsinsbasedoncolor AT pushkarevalina useofachimericrhodopsinvectorforthedetectionofnewproteorhodopsinsbasedoncolor AT hevronigur useofachimericrhodopsinvectorforthedetectionofnewproteorhodopsinsbasedoncolor AT roitmansheila useofachimericrhodopsinvectorforthedetectionofnewproteorhodopsinsbasedoncolor AT shimjingon useofachimericrhodopsinvectorforthedetectionofnewproteorhodopsinsbasedoncolor AT choiahreum useofachimericrhodopsinvectorforthedetectionofnewproteorhodopsinsbasedoncolor AT jungkwanghwan useofachimericrhodopsinvectorforthedetectionofnewproteorhodopsinsbasedoncolor AT bejaoded useofachimericrhodopsinvectorforthedetectionofnewproteorhodopsinsbasedoncolor |