Cargando…

Use of Chemical Indicators and Bioassays in Bottom Sediment Ecological Risk Assessment

This study is was designed to assess the ecological risk associated with chemical pollution caused by heavy metals and PAHs on the basis of their ecotoxicological properties in sediments collected from the Rzeszów dam reservoir (Poland). The sediment samples were collected from three sampling statio...

Descripción completa

Detalles Bibliográficos
Autores principales: Tarnawski, Marek, Baran, Agnieszka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5859060/
https://www.ncbi.nlm.nih.gov/pubmed/29487958
http://dx.doi.org/10.1007/s00244-018-0513-2
Descripción
Sumario:This study is was designed to assess the ecological risk associated with chemical pollution caused by heavy metals and PAHs on the basis of their ecotoxicological properties in sediments collected from the Rzeszów dam reservoir (Poland). The sediment samples were collected from three sampling stations: S1—inlet, backwater station, S2—middle of reservoir, S3 outlet, near the dam. The sediments’ toxicity was evaluated using a battery of bioassays (Phytotoxkit, Phytotestkit, Ostracodtoxkit F, and Microtox). The highest content of metals (120.5 mg Zn; 22.65 mg Pb; 8.20 mg Cd ∙ kg(−1) dw) and all PAHs (∑9361 μg ∙ kg(−1) dw) in sediments was found at station S1. The lowest content of metals (86.72 mg Zn; 18.07 mg Cu; 17.20 mg Pb; 3.62 mg Cu; 28.78 mg Ni; 30.52 mg Cr ∙ kg(−1) dw) and PAHs (∑4390 μg ∙ kg(−1) dw) was found in the sediment from station S2. The ecological risk assessment of the six metals and eight PAHs revealed a high potential toxicity in sediments from stations S1 (PECq = 0.69) and S3 (PECq = 0.56) and a low potential toxicity in sediments from station S2 (PECq = 0.38). The studies also showed the actual toxicity of sediments for the test organisms. The sediment pore water was least toxic compared to the whole sediment: solid phases > whole sediment > pore water. The most sensitive organism for metals and PAHs in bottom sediments was Lepidium sativum, and in pore water—Sorghum saccharatum. The concentration of metals and PAHs in bottom sediments generally did not affect the toxicity for other organisms. Clay content and organic C content are likely to be important factors, which control heavy metal and PAH concentrations in the sediments. Data analysis by PCA found the same origin of metals as well as PAHs—mainly anthropogenic sources. The obtained information demonstrated the need to integrate ecotoxicological and chemical methods for an appropriate ecological risk assessment.