Cargando…
Appearance Constrained Semi-Automatic Segmentation from DCE-MRI is Reproducible and Feasible for Breast Cancer Radiomics: A Feasibility Study
We present a segmentation approach that combines GrowCut (GC) with cancer-specific multi-parametric Gaussian Mixture Model (GCGMM) to produce accurate and reproducible segmentations. We evaluated GCGMM using a retrospectively collected 75 invasive ductal carcinoma with ERPR+ HER2− (n = 15), triple n...
Autores principales: | Veeraraghavan, Harini, Dashevsky, Brittany Z., Onishi, Natsuko, Sadinski, Meredith, Morris, Elizabeth, Deasy, Joseph O., Sutton, Elizabeth J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5859113/ https://www.ncbi.nlm.nih.gov/pubmed/29556054 http://dx.doi.org/10.1038/s41598-018-22980-9 |
Ejemplares similares
-
A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy
por: Sutton, Elizabeth J., et al.
Publicado: (2020) -
Reproducibility of radiomic features using network analysis and its application in Wasserstein k-means clustering
por: Oh, Jung Hun, et al.
Publicado: (2021) -
MRI features predictive of negative surgical margins in patients with HER2 overexpressing breast cancer undergoing breast conservation
por: Dashevsky, Brittany Z., et al.
Publicado: (2018) -
Enhancement-constrained acceleration: A robust reconstruction framework in breast DCE-MRI
por: Easley, Ty O., et al.
Publicado: (2021) -
Feasibility and intra-and interobserver reproducibility of quantitative susceptibility mapping with radiomic features for intracranial dissecting intramural hematomas and atherosclerotic calcifications
por: Park, Sang Ik, et al.
Publicado: (2023)