Cargando…
Hierarchical Spatial Concept Formation Based on Multimodal Information for Human Support Robots
In this paper, we propose a hierarchical spatial concept formation method based on the Bayesian generative model with multimodal information e.g., vision, position and word information. Since humans have the ability to select an appropriate level of abstraction according to the situation and describ...
Autores principales: | Hagiwara, Yoshinobu, Inoue, Masakazu, Kobayashi, Hiroyoshi, Taniguchi, Tadahiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5859180/ https://www.ncbi.nlm.nih.gov/pubmed/29593521 http://dx.doi.org/10.3389/fnbot.2018.00011 |
Ejemplares similares
-
Multimodal Hierarchical Dirichlet Process-Based Active Perception by a Robot
por: Taniguchi, Tadahiro, et al.
Publicado: (2018) -
Symbol Emergence as an Interpersonal Multimodal Categorization
por: Hagiwara, Yoshinobu, et al.
Publicado: (2019) -
Semantic Mapping Based on Spatial Concepts for Grounding Words Related to Places in Daily Environments
por: Katsumata, Yuki, et al.
Publicado: (2019) -
Cross-Situational Learning with Bayesian Generative Models for Multimodal Category and Word Learning in Robots
por: Taniguchi, Akira, et al.
Publicado: (2017) -
An information theoretic score for learning hierarchical concepts
por: Madani, Omid
Publicado: (2023)