Cargando…

Highly Dispersible Buckled Nanospring Carbon Nanotubes for Polymer Nano Composites

We propose the unique structure of highly dispersible single-walled carbon nanotubes (SWCNTs) in various solvents and polymers using the ZnO nano particle template. Buckled nanospring-shaped carbon nanotubes (NS-CNTs) were synthesized by a chemical reaction of ZnO nanoparticles with acid-treated SWC...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Y. J., Ham, S. R., Kim, J. H., Yoo, T. H., Kim, S. R., Lee, Y. T., Hwang, D. K, Angadi, B., Seo, W. S., Ju, B. K., Choi, W. K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5859298/
https://www.ncbi.nlm.nih.gov/pubmed/29555981
http://dx.doi.org/10.1038/s41598-018-23172-1
_version_ 1783307794689032192
author Lee, Y. J.
Ham, S. R.
Kim, J. H.
Yoo, T. H.
Kim, S. R.
Lee, Y. T.
Hwang, D. K
Angadi, B.
Seo, W. S.
Ju, B. K.
Choi, W. K.
author_facet Lee, Y. J.
Ham, S. R.
Kim, J. H.
Yoo, T. H.
Kim, S. R.
Lee, Y. T.
Hwang, D. K
Angadi, B.
Seo, W. S.
Ju, B. K.
Choi, W. K.
author_sort Lee, Y. J.
collection PubMed
description We propose the unique structure of highly dispersible single-walled carbon nanotubes (SWCNTs) in various solvents and polymers using the ZnO nano particle template. Buckled nanospring-shaped carbon nanotubes (NS-CNTs) were synthesized by a chemical reaction of ZnO nanoparticles with acid-treated SWCNTs and then dissolving ZnO through chemical etching. The unique structure of distorted hexagonal NS-CNTs encircled around ZnO nanoparticles was formed by the bending of SWCNTs caused by the agglomeration of chemically adsorbed Zn(OH)(2), which is further crystallized as the polycrystalline ZnO inner core. The highly dispersible NS-CNTs could be incorporated in the poly[(vinylidenefluoride-co-trifluoroethylene] [P(VDF-TrFE)] copolymer, one of widely studied ferro- and piezo-electric polymer, up to the value of 15 wt% as nanofillers. The relative dielectric constant (K) of polymer nanocomposite, at 1 kHz, was greatly enhanced from 12.7 to the value of 62.5 at 11 wt% of NS-CNTs, corresponding to a 492% increase compared to that of pristine P(VDF-TrFE) with only a small dielectric loss tangent (D) of 0.1.
format Online
Article
Text
id pubmed-5859298
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-58592982018-03-20 Highly Dispersible Buckled Nanospring Carbon Nanotubes for Polymer Nano Composites Lee, Y. J. Ham, S. R. Kim, J. H. Yoo, T. H. Kim, S. R. Lee, Y. T. Hwang, D. K Angadi, B. Seo, W. S. Ju, B. K. Choi, W. K. Sci Rep Article We propose the unique structure of highly dispersible single-walled carbon nanotubes (SWCNTs) in various solvents and polymers using the ZnO nano particle template. Buckled nanospring-shaped carbon nanotubes (NS-CNTs) were synthesized by a chemical reaction of ZnO nanoparticles with acid-treated SWCNTs and then dissolving ZnO through chemical etching. The unique structure of distorted hexagonal NS-CNTs encircled around ZnO nanoparticles was formed by the bending of SWCNTs caused by the agglomeration of chemically adsorbed Zn(OH)(2), which is further crystallized as the polycrystalline ZnO inner core. The highly dispersible NS-CNTs could be incorporated in the poly[(vinylidenefluoride-co-trifluoroethylene] [P(VDF-TrFE)] copolymer, one of widely studied ferro- and piezo-electric polymer, up to the value of 15 wt% as nanofillers. The relative dielectric constant (K) of polymer nanocomposite, at 1 kHz, was greatly enhanced from 12.7 to the value of 62.5 at 11 wt% of NS-CNTs, corresponding to a 492% increase compared to that of pristine P(VDF-TrFE) with only a small dielectric loss tangent (D) of 0.1. Nature Publishing Group UK 2018-03-19 /pmc/articles/PMC5859298/ /pubmed/29555981 http://dx.doi.org/10.1038/s41598-018-23172-1 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Lee, Y. J.
Ham, S. R.
Kim, J. H.
Yoo, T. H.
Kim, S. R.
Lee, Y. T.
Hwang, D. K
Angadi, B.
Seo, W. S.
Ju, B. K.
Choi, W. K.
Highly Dispersible Buckled Nanospring Carbon Nanotubes for Polymer Nano Composites
title Highly Dispersible Buckled Nanospring Carbon Nanotubes for Polymer Nano Composites
title_full Highly Dispersible Buckled Nanospring Carbon Nanotubes for Polymer Nano Composites
title_fullStr Highly Dispersible Buckled Nanospring Carbon Nanotubes for Polymer Nano Composites
title_full_unstemmed Highly Dispersible Buckled Nanospring Carbon Nanotubes for Polymer Nano Composites
title_short Highly Dispersible Buckled Nanospring Carbon Nanotubes for Polymer Nano Composites
title_sort highly dispersible buckled nanospring carbon nanotubes for polymer nano composites
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5859298/
https://www.ncbi.nlm.nih.gov/pubmed/29555981
http://dx.doi.org/10.1038/s41598-018-23172-1
work_keys_str_mv AT leeyj highlydispersiblebucklednanospringcarbonnanotubesforpolymernanocomposites
AT hamsr highlydispersiblebucklednanospringcarbonnanotubesforpolymernanocomposites
AT kimjh highlydispersiblebucklednanospringcarbonnanotubesforpolymernanocomposites
AT yooth highlydispersiblebucklednanospringcarbonnanotubesforpolymernanocomposites
AT kimsr highlydispersiblebucklednanospringcarbonnanotubesforpolymernanocomposites
AT leeyt highlydispersiblebucklednanospringcarbonnanotubesforpolymernanocomposites
AT hwangdk highlydispersiblebucklednanospringcarbonnanotubesforpolymernanocomposites
AT angadib highlydispersiblebucklednanospringcarbonnanotubesforpolymernanocomposites
AT seows highlydispersiblebucklednanospringcarbonnanotubesforpolymernanocomposites
AT jubk highlydispersiblebucklednanospringcarbonnanotubesforpolymernanocomposites
AT choiwk highlydispersiblebucklednanospringcarbonnanotubesforpolymernanocomposites