Cargando…
Dosimetric Impact of a Tumor Treating Fields Device for Glioblastoma Patients Undergoing Simultaneous Radiation Therapy
PURPOSE: A recent randomized phase III clinical trial in patients with glioblastoma demonstrated the efficacy of tumor treating fields (TTFields), in which alternating electric fields are applied via transducer arrays to a patient’s scalp. This treatment, when added to standard of care therapy, was...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5859355/ https://www.ncbi.nlm.nih.gov/pubmed/29594036 http://dx.doi.org/10.3389/fonc.2018.00051 |
_version_ | 1783307801995509760 |
---|---|
author | Li, Taoran Shukla, Gaurav Peng, Cheng Lockamy, Virginia Liu, Haisong Shi, Wenyin |
author_facet | Li, Taoran Shukla, Gaurav Peng, Cheng Lockamy, Virginia Liu, Haisong Shi, Wenyin |
author_sort | Li, Taoran |
collection | PubMed |
description | PURPOSE: A recent randomized phase III clinical trial in patients with glioblastoma demonstrated the efficacy of tumor treating fields (TTFields), in which alternating electric fields are applied via transducer arrays to a patient’s scalp. This treatment, when added to standard of care therapy, was shown to increase overall survival from 16 to 20.9 months. These results have generated significant interest in incorporating the use of TTFields during postoperative concurrent chemoradiation. However, the dosimetric impact of high-density electrodes on the scalp, within the radiation field, is unknown. METHODS: The dosimetric impact of TTFields electrodes in the radiation field was quantified in two ways: (1) dose calculated in a treatment planning system and (2) physical measurements of surface and deep doses. In the dose calculation comparison, a volumetric-modulated-arc-therapy (VMAT) radiation plan was developed on a CT scan without electrodes and then recalculated with electrodes. For physical measurements, the surface dose underneath TTFields electrodes were measured using a parallel plate ionization chamber and compared to measurements without electrodes for various incident beam angles and for 12 VMAT arc deliveries. Deep dose measurements were conducted for five VMAT plans using Scandidos Delta4 diode array: measured doses on two orthogonal diode arrays were compared. RESULTS: In the treatment planning system, the presence of the TTFields device caused mean reduction of PTV dose of 0.5–1%, and a mean increase in scalp dose of 0.5–1 Gy. Physical measurement showed increases of surface dose directly underneath by 30–110% for open fields with varying beam angles and by 70–160% for VMAT deliveries. Deep dose measurement by diode array showed dose decrease of 1–2% in most areas shadowed by the electrodes (max decrease 2.54%). CONCLUSION: The skin dose in patients being treating with cranial irradiation for glioblastoma may increase substantially (130–260%) with the addition of concurrent TTFields electrodes on the scalp. However, the impact of dose attenuation by the electrodes on deep dose during VMAT treatment is of much smaller, but measureable, magnitude (1–2%). Clinical trials exploring concurrent TTFields with cranial irradiation for glioblastoma may utilize scalp-sparing techniques to mitigate any potential increase in skin toxicity. |
format | Online Article Text |
id | pubmed-5859355 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-58593552018-03-28 Dosimetric Impact of a Tumor Treating Fields Device for Glioblastoma Patients Undergoing Simultaneous Radiation Therapy Li, Taoran Shukla, Gaurav Peng, Cheng Lockamy, Virginia Liu, Haisong Shi, Wenyin Front Oncol Oncology PURPOSE: A recent randomized phase III clinical trial in patients with glioblastoma demonstrated the efficacy of tumor treating fields (TTFields), in which alternating electric fields are applied via transducer arrays to a patient’s scalp. This treatment, when added to standard of care therapy, was shown to increase overall survival from 16 to 20.9 months. These results have generated significant interest in incorporating the use of TTFields during postoperative concurrent chemoradiation. However, the dosimetric impact of high-density electrodes on the scalp, within the radiation field, is unknown. METHODS: The dosimetric impact of TTFields electrodes in the radiation field was quantified in two ways: (1) dose calculated in a treatment planning system and (2) physical measurements of surface and deep doses. In the dose calculation comparison, a volumetric-modulated-arc-therapy (VMAT) radiation plan was developed on a CT scan without electrodes and then recalculated with electrodes. For physical measurements, the surface dose underneath TTFields electrodes were measured using a parallel plate ionization chamber and compared to measurements without electrodes for various incident beam angles and for 12 VMAT arc deliveries. Deep dose measurements were conducted for five VMAT plans using Scandidos Delta4 diode array: measured doses on two orthogonal diode arrays were compared. RESULTS: In the treatment planning system, the presence of the TTFields device caused mean reduction of PTV dose of 0.5–1%, and a mean increase in scalp dose of 0.5–1 Gy. Physical measurement showed increases of surface dose directly underneath by 30–110% for open fields with varying beam angles and by 70–160% for VMAT deliveries. Deep dose measurement by diode array showed dose decrease of 1–2% in most areas shadowed by the electrodes (max decrease 2.54%). CONCLUSION: The skin dose in patients being treating with cranial irradiation for glioblastoma may increase substantially (130–260%) with the addition of concurrent TTFields electrodes on the scalp. However, the impact of dose attenuation by the electrodes on deep dose during VMAT treatment is of much smaller, but measureable, magnitude (1–2%). Clinical trials exploring concurrent TTFields with cranial irradiation for glioblastoma may utilize scalp-sparing techniques to mitigate any potential increase in skin toxicity. Frontiers Media S.A. 2018-03-13 /pmc/articles/PMC5859355/ /pubmed/29594036 http://dx.doi.org/10.3389/fonc.2018.00051 Text en Copyright © 2018 Li, Shukla, Peng, Lockamy, Liu and Shi. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Li, Taoran Shukla, Gaurav Peng, Cheng Lockamy, Virginia Liu, Haisong Shi, Wenyin Dosimetric Impact of a Tumor Treating Fields Device for Glioblastoma Patients Undergoing Simultaneous Radiation Therapy |
title | Dosimetric Impact of a Tumor Treating Fields Device for Glioblastoma Patients Undergoing Simultaneous Radiation Therapy |
title_full | Dosimetric Impact of a Tumor Treating Fields Device for Glioblastoma Patients Undergoing Simultaneous Radiation Therapy |
title_fullStr | Dosimetric Impact of a Tumor Treating Fields Device for Glioblastoma Patients Undergoing Simultaneous Radiation Therapy |
title_full_unstemmed | Dosimetric Impact of a Tumor Treating Fields Device for Glioblastoma Patients Undergoing Simultaneous Radiation Therapy |
title_short | Dosimetric Impact of a Tumor Treating Fields Device for Glioblastoma Patients Undergoing Simultaneous Radiation Therapy |
title_sort | dosimetric impact of a tumor treating fields device for glioblastoma patients undergoing simultaneous radiation therapy |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5859355/ https://www.ncbi.nlm.nih.gov/pubmed/29594036 http://dx.doi.org/10.3389/fonc.2018.00051 |
work_keys_str_mv | AT litaoran dosimetricimpactofatumortreatingfieldsdeviceforglioblastomapatientsundergoingsimultaneousradiationtherapy AT shuklagaurav dosimetricimpactofatumortreatingfieldsdeviceforglioblastomapatientsundergoingsimultaneousradiationtherapy AT pengcheng dosimetricimpactofatumortreatingfieldsdeviceforglioblastomapatientsundergoingsimultaneousradiationtherapy AT lockamyvirginia dosimetricimpactofatumortreatingfieldsdeviceforglioblastomapatientsundergoingsimultaneousradiationtherapy AT liuhaisong dosimetricimpactofatumortreatingfieldsdeviceforglioblastomapatientsundergoingsimultaneousradiationtherapy AT shiwenyin dosimetricimpactofatumortreatingfieldsdeviceforglioblastomapatientsundergoingsimultaneousradiationtherapy |