Cargando…

Effects of stanozolol on normal and IL-1β-stimulated equine chondrocytes in vitro

BACKGROUND: Intra-articular administration of stanozolol has shown promising results by improving the clinical management of lameness associated with naturally-occurring osteoarthritis (OA) in horses, and by decreasing osteophyte formation and subchondral bone reaction in sheep following surgically...

Descripción completa

Detalles Bibliográficos
Autores principales: Castro Martins, Mariana, Peffers, Mandy J., Lee, Katie, Rubio-Martinez, Luis M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5859414/
https://www.ncbi.nlm.nih.gov/pubmed/29554899
http://dx.doi.org/10.1186/s12917-018-1426-z
Descripción
Sumario:BACKGROUND: Intra-articular administration of stanozolol has shown promising results by improving the clinical management of lameness associated with naturally-occurring osteoarthritis (OA) in horses, and by decreasing osteophyte formation and subchondral bone reaction in sheep following surgically induced OA. However, there is limited evidence on the anti-inflammatory and modulatory properties of stanozolol on articular tissues. The objective of the current study was to evaluate the effects of stanozolol on chondrocyte viability and gene expression in normal equine chondrocytes and an inflammatory in vitro system of OA (interleukin-1β (IL-1β) treated chondrocytes). RESULTS: Chondrocytes from normal metacarpophalangeal joints of skeletally mature horses were exposed to four treatment groups: (1) media only (2) media+IL-1β (3) media+IL-1β + stanozolol (4) media+stanozolol. Following exposure, chondrocyte viability and the expression of catabolic, anabolic and structural genes were determined. General linear models with Dunnet’s comparisons with Bonferroni’s adjustment were performed. Cell viability was similar in all groups. Stanozolol treatment reduced gene expression of MMP-13, MMP-1, IL-6 and COX-2 in both normal and IL-1β treated chondrocytes. Stanozolol treatment reduced ADAMTS4 gene expression in normal chondrocytes. Stanozolol reduced the expression of COL2A1. CONCLUSIONS: The current study demonstrates stanozolol has chondroprotective effects through downregulation of genes for pro-inflammatory/catabolic cytokines and enzymes associated with OA. However, there is no evidence of increased cartilage stimulation through upregulation of the anabolic and structural genes tested.