Cargando…
BALDR: a computational pipeline for paired heavy and light chain immunoglobulin reconstruction in single-cell RNA-seq data
B cells play a critical role in the immune response by producing antibodies, which display remarkable diversity. Here we describe a bioinformatic pipeline, BALDR (BCR Assignment of Lineage using De novo Reconstruction) that accurately reconstructs the paired heavy and light chain immunoglobulin gene...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5859752/ https://www.ncbi.nlm.nih.gov/pubmed/29558968 http://dx.doi.org/10.1186/s13073-018-0528-3 |
Sumario: | B cells play a critical role in the immune response by producing antibodies, which display remarkable diversity. Here we describe a bioinformatic pipeline, BALDR (BCR Assignment of Lineage using De novo Reconstruction) that accurately reconstructs the paired heavy and light chain immunoglobulin gene sequences from Illumina single-cell RNA-seq data. BALDR was accurate for clonotype identification in human and rhesus macaque influenza vaccine and simian immunodeficiency virus vaccine induced vaccine-induced plasmablasts and naïve and antigen-specific memory B cells. BALDR enables matching of clonotype identity with single-cell transcriptional information in B cell lineages and will have broad application in the fields of vaccines, human immunodeficiency virus broadly neutralizing antibody development, and cancer. BALDR is available at https://github.com/BosingerLab/BALDR. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13073-018-0528-3) contains supplementary material, which is available to authorized users. |
---|