Cargando…
A suite of global, cross-scale topographic variables for environmental and biodiversity modeling
Topographic variation underpins a myriad of patterns and processes in hydrology, climatology, geography and ecology and is key to understanding the variation of life on the planet. A fully standardized and global multivariate product of different terrain features has the potential to support many la...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5859920/ https://www.ncbi.nlm.nih.gov/pubmed/29557978 http://dx.doi.org/10.1038/sdata.2018.40 |
_version_ | 1783307927164026880 |
---|---|
author | Amatulli, Giuseppe Domisch, Sami Tuanmu, Mao-Ning Parmentier, Benoit Ranipeta, Ajay Malczyk, Jeremy Jetz, Walter |
author_facet | Amatulli, Giuseppe Domisch, Sami Tuanmu, Mao-Ning Parmentier, Benoit Ranipeta, Ajay Malczyk, Jeremy Jetz, Walter |
author_sort | Amatulli, Giuseppe |
collection | PubMed |
description | Topographic variation underpins a myriad of patterns and processes in hydrology, climatology, geography and ecology and is key to understanding the variation of life on the planet. A fully standardized and global multivariate product of different terrain features has the potential to support many large-scale research applications, however to date, such datasets are unavailable. Here we used the digital elevation model products of global 250 m GMTED2010 and near-global 90 m SRTM4.1dev to derive a suite of topographic variables: elevation, slope, aspect, eastness, northness, roughness, terrain roughness index, topographic position index, vector ruggedness measure, profile/tangential curvature, first/second order partial derivative, and 10 geomorphological landform classes. We aggregated each variable to 1, 5, 10, 50 and 100 km spatial grains using several aggregation approaches. While a cross-correlation underlines the high similarity of many variables, a more detailed view in four mountain regions reveals local differences, as well as scale variations in the aggregated variables at different spatial grains. All newly-developed variables are available for download at Data Citation 1 and for download and visualization at http://www.earthenv.org/topography. |
format | Online Article Text |
id | pubmed-5859920 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-58599202018-03-24 A suite of global, cross-scale topographic variables for environmental and biodiversity modeling Amatulli, Giuseppe Domisch, Sami Tuanmu, Mao-Ning Parmentier, Benoit Ranipeta, Ajay Malczyk, Jeremy Jetz, Walter Sci Data Data Descriptor Topographic variation underpins a myriad of patterns and processes in hydrology, climatology, geography and ecology and is key to understanding the variation of life on the planet. A fully standardized and global multivariate product of different terrain features has the potential to support many large-scale research applications, however to date, such datasets are unavailable. Here we used the digital elevation model products of global 250 m GMTED2010 and near-global 90 m SRTM4.1dev to derive a suite of topographic variables: elevation, slope, aspect, eastness, northness, roughness, terrain roughness index, topographic position index, vector ruggedness measure, profile/tangential curvature, first/second order partial derivative, and 10 geomorphological landform classes. We aggregated each variable to 1, 5, 10, 50 and 100 km spatial grains using several aggregation approaches. While a cross-correlation underlines the high similarity of many variables, a more detailed view in four mountain regions reveals local differences, as well as scale variations in the aggregated variables at different spatial grains. All newly-developed variables are available for download at Data Citation 1 and for download and visualization at http://www.earthenv.org/topography. Nature Publishing Group 2018-03-20 /pmc/articles/PMC5859920/ /pubmed/29557978 http://dx.doi.org/10.1038/sdata.2018.40 Text en Copyright © 2018, The Author(s) http://creativecommons.org/licenses/by/4.0/ Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files made available in this article. |
spellingShingle | Data Descriptor Amatulli, Giuseppe Domisch, Sami Tuanmu, Mao-Ning Parmentier, Benoit Ranipeta, Ajay Malczyk, Jeremy Jetz, Walter A suite of global, cross-scale topographic variables for environmental and biodiversity modeling |
title | A suite of global, cross-scale topographic variables for environmental and biodiversity modeling |
title_full | A suite of global, cross-scale topographic variables for environmental and biodiversity modeling |
title_fullStr | A suite of global, cross-scale topographic variables for environmental and biodiversity modeling |
title_full_unstemmed | A suite of global, cross-scale topographic variables for environmental and biodiversity modeling |
title_short | A suite of global, cross-scale topographic variables for environmental and biodiversity modeling |
title_sort | suite of global, cross-scale topographic variables for environmental and biodiversity modeling |
topic | Data Descriptor |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5859920/ https://www.ncbi.nlm.nih.gov/pubmed/29557978 http://dx.doi.org/10.1038/sdata.2018.40 |
work_keys_str_mv | AT amatulligiuseppe asuiteofglobalcrossscaletopographicvariablesforenvironmentalandbiodiversitymodeling AT domischsami asuiteofglobalcrossscaletopographicvariablesforenvironmentalandbiodiversitymodeling AT tuanmumaoning asuiteofglobalcrossscaletopographicvariablesforenvironmentalandbiodiversitymodeling AT parmentierbenoit asuiteofglobalcrossscaletopographicvariablesforenvironmentalandbiodiversitymodeling AT ranipetaajay asuiteofglobalcrossscaletopographicvariablesforenvironmentalandbiodiversitymodeling AT malczykjeremy asuiteofglobalcrossscaletopographicvariablesforenvironmentalandbiodiversitymodeling AT jetzwalter asuiteofglobalcrossscaletopographicvariablesforenvironmentalandbiodiversitymodeling AT amatulligiuseppe suiteofglobalcrossscaletopographicvariablesforenvironmentalandbiodiversitymodeling AT domischsami suiteofglobalcrossscaletopographicvariablesforenvironmentalandbiodiversitymodeling AT tuanmumaoning suiteofglobalcrossscaletopographicvariablesforenvironmentalandbiodiversitymodeling AT parmentierbenoit suiteofglobalcrossscaletopographicvariablesforenvironmentalandbiodiversitymodeling AT ranipetaajay suiteofglobalcrossscaletopographicvariablesforenvironmentalandbiodiversitymodeling AT malczykjeremy suiteofglobalcrossscaletopographicvariablesforenvironmentalandbiodiversitymodeling AT jetzwalter suiteofglobalcrossscaletopographicvariablesforenvironmentalandbiodiversitymodeling |