Cargando…
Neuro-symbolic representation learning on biological knowledge graphs
MOTIVATION: Biological data and knowledge bases increasingly rely on Semantic Web technologies and the use of knowledge graphs for data integration, retrieval and federated queries. In the past years, feature learning methods that are applicable to graph-structured data are becoming available, but h...
Autores principales: | Alshahrani, Mona, Khan, Mohammad Asif, Maddouri, Omar, Kinjo, Akira R, Queralt-Rosinach, Núria, Hoehndorf, Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860058/ https://www.ncbi.nlm.nih.gov/pubmed/28449114 http://dx.doi.org/10.1093/bioinformatics/btx275 |
Ejemplares similares
-
Combining biomedical knowledge graphs and text to improve predictions for drug-target interactions and drug-indications
por: Alshahrani, Mona, et al.
Publicado: (2022) -
autoBOT: evolving neuro-symbolic representations for explainable low resource text classification
por: Škrlj, Blaž, et al.
Publicado: (2021) -
Time-resolved evaluation of compound repositioning predictions on a text-mined knowledge network
por: Mayers, Michael, et al.
Publicado: (2019) -
A proof-of-concept study of extracting patient histories for rare/intractable diseases from social media
por: Yamaguchi, Atsuko, et al.
Publicado: (2020) -
Neuro-symbolic approaches in artificial intelligence
por: Hitzler, Pascal, et al.
Publicado: (2022)