Cargando…
biMM: efficient estimation of genetic variances and covariances for cohorts with high-dimensional phenotype measurements
SUMMARY: Genetic research utilizes a decomposition of trait variances and covariances into genetic and environmental parts. Our software package biMM is a computationally efficient implementation of a bivariate linear mixed model for settings where hundreds of traits have been measured on partially...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860115/ https://www.ncbi.nlm.nih.gov/pubmed/28369165 http://dx.doi.org/10.1093/bioinformatics/btx166 |
_version_ | 1783307948034883584 |
---|---|
author | Pirinen, Matti Benner, Christian Marttinen, Pekka Järvelin, Marjo-Riitta Rivas, Manuel A Ripatti, Samuli |
author_facet | Pirinen, Matti Benner, Christian Marttinen, Pekka Järvelin, Marjo-Riitta Rivas, Manuel A Ripatti, Samuli |
author_sort | Pirinen, Matti |
collection | PubMed |
description | SUMMARY: Genetic research utilizes a decomposition of trait variances and covariances into genetic and environmental parts. Our software package biMM is a computationally efficient implementation of a bivariate linear mixed model for settings where hundreds of traits have been measured on partially overlapping sets of individuals. AVAILABILITY AND IMPLEMENTATION: Implementation in R freely available at www.iki.fi/mpirinen. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-5860115 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-58601152018-03-23 biMM: efficient estimation of genetic variances and covariances for cohorts with high-dimensional phenotype measurements Pirinen, Matti Benner, Christian Marttinen, Pekka Järvelin, Marjo-Riitta Rivas, Manuel A Ripatti, Samuli Bioinformatics Applications Notes SUMMARY: Genetic research utilizes a decomposition of trait variances and covariances into genetic and environmental parts. Our software package biMM is a computationally efficient implementation of a bivariate linear mixed model for settings where hundreds of traits have been measured on partially overlapping sets of individuals. AVAILABILITY AND IMPLEMENTATION: Implementation in R freely available at www.iki.fi/mpirinen. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2017-08-01 2017-03-28 /pmc/articles/PMC5860115/ /pubmed/28369165 http://dx.doi.org/10.1093/bioinformatics/btx166 Text en © The Author 2017. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Applications Notes Pirinen, Matti Benner, Christian Marttinen, Pekka Järvelin, Marjo-Riitta Rivas, Manuel A Ripatti, Samuli biMM: efficient estimation of genetic variances and covariances for cohorts with high-dimensional phenotype measurements |
title | biMM: efficient estimation of genetic variances and covariances for cohorts with high-dimensional phenotype measurements |
title_full | biMM: efficient estimation of genetic variances and covariances for cohorts with high-dimensional phenotype measurements |
title_fullStr | biMM: efficient estimation of genetic variances and covariances for cohorts with high-dimensional phenotype measurements |
title_full_unstemmed | biMM: efficient estimation of genetic variances and covariances for cohorts with high-dimensional phenotype measurements |
title_short | biMM: efficient estimation of genetic variances and covariances for cohorts with high-dimensional phenotype measurements |
title_sort | bimm: efficient estimation of genetic variances and covariances for cohorts with high-dimensional phenotype measurements |
topic | Applications Notes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860115/ https://www.ncbi.nlm.nih.gov/pubmed/28369165 http://dx.doi.org/10.1093/bioinformatics/btx166 |
work_keys_str_mv | AT pirinenmatti bimmefficientestimationofgeneticvariancesandcovariancesforcohortswithhighdimensionalphenotypemeasurements AT bennerchristian bimmefficientestimationofgeneticvariancesandcovariancesforcohortswithhighdimensionalphenotypemeasurements AT marttinenpekka bimmefficientestimationofgeneticvariancesandcovariancesforcohortswithhighdimensionalphenotypemeasurements AT jarvelinmarjoriitta bimmefficientestimationofgeneticvariancesandcovariancesforcohortswithhighdimensionalphenotypemeasurements AT rivasmanuela bimmefficientestimationofgeneticvariancesandcovariancesforcohortswithhighdimensionalphenotypemeasurements AT ripattisamuli bimmefficientestimationofgeneticvariancesandcovariancesforcohortswithhighdimensionalphenotypemeasurements |