Cargando…
MOAT: efficient detection of highly mutated regions with the Mutations Overburdening Annotations Tool
SUMMARY: Identifying genomic regions with higher than expected mutation count is useful for cancer driver detection. Previous parametric approaches require numerous cell-type-matched covariates for accurate background mutation rate (BMR) estimation, which is not practical for many situations. Non-pa...
Autores principales: | Lochovsky, Lucas, Zhang, Jing, Gerstein, Mark |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860157/ https://www.ncbi.nlm.nih.gov/pubmed/29121169 http://dx.doi.org/10.1093/bioinformatics/btx700 |
Ejemplares similares
-
Gene Tracer: a smart, interactive, voice-controlled Alexa skill For gene information retrieval and browsing, mutation annotation and network visualization
por: Lou, Shaoke, et al.
Publicado: (2021) -
ACT: aggregation and correlation toolbox for analyses of genome tracks
por: Jee, Justin, et al.
Publicado: (2011) -
Enabling a fast annotation process with the Table2Annotation tool
por: Larmande, Pierre, et al.
Publicado: (2020) -
Annotating high-impact 5′untranslated region variants with the UTRannotator
por: Zhang, Xiaolei, et al.
Publicado: (2020) -
MetaboAnnotator: an efficient toolbox to annotate metabolites in genome-scale metabolic reconstructions
por: Thiele, Ines, et al.
Publicado: (2022)