Cargando…
SINCERITIES: inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles
MOTIVATION: Single cell transcriptional profiling opens up a new avenue in studying the functional role of cell-to-cell variability in physiological processes. The analysis of single cell expression profiles creates new challenges due to the distributive nature of the data and the stochastic dynamic...
Autores principales: | Papili Gao, Nan, Ud-Dean, S M Minhaz, Gandrillon, Olivier, Gunawan, Rudiyanto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860204/ https://www.ncbi.nlm.nih.gov/pubmed/28968704 http://dx.doi.org/10.1093/bioinformatics/btx575 |
Ejemplares similares
-
Ensemble Inference and Inferability of Gene Regulatory Networks
por: Ud-Dean, S. M. Minhaz, et al.
Publicado: (2014) -
Optimal design of gene knockout experiments for gene regulatory network inference
por: Ud-Dean, S. M. Minhaz, et al.
Publicado: (2016) -
Single-cell transcriptional uncertainty landscape of cell differentiation
por: Gao, Nan Papili, et al.
Publicado: (2023) -
TRaCE+: Ensemble inference of gene regulatory networks from transcriptional expression profiles of gene knock-out experiments
por: Ud-Dean, S.M. Minhaz, et al.
Publicado: (2016) -
CALISTA: Clustering and LINEAGE Inference in Single-Cell Transcriptional Analysis
por: Papili Gao, Nan, et al.
Publicado: (2020)