Cargando…
Efficient inference for sparse latent variable models of transcriptional regulation
MOTIVATION: Regulation of gene expression in prokaryotes involves complex co-regulatory mechanisms involving large numbers of transcriptional regulatory proteins and their target genes. Uncovering these genome-scale interactions constitutes a major bottleneck in systems biology. Sparse latent factor...
Autores principales: | Dai, Zhenwen, Iqbal, Mudassar, Lawrence, Neil D, Rattray, Magnus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860323/ https://www.ncbi.nlm.nih.gov/pubmed/28961802 http://dx.doi.org/10.1093/bioinformatics/btx508 |
Ejemplares similares
-
Fast and accurate approximate inference of transcript expression from RNA-seq data
por: Hensman, James, et al.
Publicado: (2015) -
Scalable inference of transcriptional kinetic parameters from MS2 time series data
por: Bowles, Jonathan R, et al.
Publicado: (2021) -
Identifying targets of multiple co-regulating transcription factors from expression time-series by Bayesian model comparison
por: Titsias, Michalis K, et al.
Publicado: (2012) -
Inference of RNA Polymerase II Transcription Dynamics from Chromatin Immunoprecipitation Time Course Data
por: wa Maina, Ciira, et al.
Publicado: (2014) -
Data driven model discovery and interpretation for CAR T-cell killing using sparse identification and latent variables
por: Brummer, Alexander B., et al.
Publicado: (2023)