Cargando…
scHiCNorm: a software package to eliminate systematic biases in single-cell Hi-C data
SUMMARY: We build a software package scHiCNorm that uses zero-inflated and hurdle models to remove biases from single-cell Hi-C data. Our evaluations prove that our models can effectively eliminate systematic biases for single-cell Hi-C data, which better reveal cell-to-cell variances in terms of ch...
Autores principales: | Liu, Tong, Wang, Zheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860379/ https://www.ncbi.nlm.nih.gov/pubmed/29186290 http://dx.doi.org/10.1093/bioinformatics/btx747 |
Ejemplares similares
-
scHiCDiff: detecting differential chromatin interactions in single-cell Hi-C data
por: Liu, Huiling, et al.
Publicado: (2023) -
Hi-Corrector: a fast, scalable and memory-efficient package for normalizing large-scale Hi-C data
por: Li, Wenyuan, et al.
Publicado: (2015) -
HiCube: interactive visualization of multiscale and multimodal Hi-C and 3D genome data
por: Ye, Tiantian, et al.
Publicado: (2023) -
snHiC: a complete and simplified snakemake pipeline for grouped Hi-C data analysis
por: Gregoricchio, Sebastian, et al.
Publicado: (2023) -
HiCBricks: building blocks for efficient handling of large Hi-C datasets
por: Pal, Koustav, et al.
Publicado: (2020)