Cargando…
Use of Repeated Blood Pressure and Cholesterol Measurements to Improve Cardiovascular Disease Risk Prediction: An Individual-Participant-Data Meta-Analysis
The added value of incorporating information from repeated blood pressure and cholesterol measurements to predict cardiovascular disease (CVD) risk has not been rigorously assessed. We used data on 191,445 adults from the Emerging Risk Factors Collaboration (38 cohorts from 17 countries with data en...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860526/ https://www.ncbi.nlm.nih.gov/pubmed/28549073 http://dx.doi.org/10.1093/aje/kwx149 |
_version_ | 1783307978309369856 |
---|---|
author | Paige, Ellie Barrett, Jessica Pennells, Lisa Sweeting, Michael Willeit, Peter Di Angelantonio, Emanuele Gudnason, Vilmundur Nordestgaard, Børge G. Psaty, Bruce M Goldbourt, Uri Best, Lyle G Assmann, Gerd Salonen, Jukka T Nietert, Paul J Verschuren, W. M. Monique Brunner, Eric J Kronmal, Richard A Salomaa, Veikko Bakker, Stephan J L Dagenais, Gilles R Sato, Shinichi Jansson, Jan-Håkan Willeit, Johann Onat, Altan de la Cámara, Agustin Gómez Roussel, Ronan Völzke, Henry Dankner, Rachel Tipping, Robert W Meade, Tom W Donfrancesco, Chiara Kuller, Lewis H Peters, Annette Gallacher, John Kromhout, Daan Iso, Hiroyasu Knuiman, Matthew Casiglia, Edoardo Kavousi, Maryam Palmieri, Luigi Sundström, Johan Davis, Barry R Njølstad, Inger Couper, David Danesh, John Thompson, Simon G Wood, Angela |
author_facet | Paige, Ellie Barrett, Jessica Pennells, Lisa Sweeting, Michael Willeit, Peter Di Angelantonio, Emanuele Gudnason, Vilmundur Nordestgaard, Børge G. Psaty, Bruce M Goldbourt, Uri Best, Lyle G Assmann, Gerd Salonen, Jukka T Nietert, Paul J Verschuren, W. M. Monique Brunner, Eric J Kronmal, Richard A Salomaa, Veikko Bakker, Stephan J L Dagenais, Gilles R Sato, Shinichi Jansson, Jan-Håkan Willeit, Johann Onat, Altan de la Cámara, Agustin Gómez Roussel, Ronan Völzke, Henry Dankner, Rachel Tipping, Robert W Meade, Tom W Donfrancesco, Chiara Kuller, Lewis H Peters, Annette Gallacher, John Kromhout, Daan Iso, Hiroyasu Knuiman, Matthew Casiglia, Edoardo Kavousi, Maryam Palmieri, Luigi Sundström, Johan Davis, Barry R Njølstad, Inger Couper, David Danesh, John Thompson, Simon G Wood, Angela |
author_sort | Paige, Ellie |
collection | PubMed |
description | The added value of incorporating information from repeated blood pressure and cholesterol measurements to predict cardiovascular disease (CVD) risk has not been rigorously assessed. We used data on 191,445 adults from the Emerging Risk Factors Collaboration (38 cohorts from 17 countries with data encompassing 1962–2014) with more than 1 million measurements of systolic blood pressure, total cholesterol, and high-density lipoprotein cholesterol. Over a median 12 years of follow-up, 21,170 CVD events occurred. Risk prediction models using cumulative mean values of repeated measurements and summary measures from longitudinal modeling of the repeated measurements were compared with models using measurements from a single time point. Risk discrimination (C-index) and net reclassification were calculated, and changes in C-indices were meta-analyzed across studies. Compared with the single-time-point model, the cumulative means and longitudinal models increased the C-index by 0.0040 (95% confidence interval (CI): 0.0023, 0.0057) and 0.0023 (95% CI: 0.0005, 0.0042), respectively. Reclassification was also improved in both models; compared with the single-time-point model, overall net reclassification improvements were 0.0369 (95% CI: 0.0303, 0.0436) for the cumulative-means model and 0.0177 (95% CI: 0.0110, 0.0243) for the longitudinal model. In conclusion, incorporating repeated measurements of blood pressure and cholesterol into CVD risk prediction models slightly improves risk prediction. |
format | Online Article Text |
id | pubmed-5860526 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-58605262018-03-28 Use of Repeated Blood Pressure and Cholesterol Measurements to Improve Cardiovascular Disease Risk Prediction: An Individual-Participant-Data Meta-Analysis Paige, Ellie Barrett, Jessica Pennells, Lisa Sweeting, Michael Willeit, Peter Di Angelantonio, Emanuele Gudnason, Vilmundur Nordestgaard, Børge G. Psaty, Bruce M Goldbourt, Uri Best, Lyle G Assmann, Gerd Salonen, Jukka T Nietert, Paul J Verschuren, W. M. Monique Brunner, Eric J Kronmal, Richard A Salomaa, Veikko Bakker, Stephan J L Dagenais, Gilles R Sato, Shinichi Jansson, Jan-Håkan Willeit, Johann Onat, Altan de la Cámara, Agustin Gómez Roussel, Ronan Völzke, Henry Dankner, Rachel Tipping, Robert W Meade, Tom W Donfrancesco, Chiara Kuller, Lewis H Peters, Annette Gallacher, John Kromhout, Daan Iso, Hiroyasu Knuiman, Matthew Casiglia, Edoardo Kavousi, Maryam Palmieri, Luigi Sundström, Johan Davis, Barry R Njølstad, Inger Couper, David Danesh, John Thompson, Simon G Wood, Angela Am J Epidemiol Systematic Reviews, Meta- and Pooled Analyses The added value of incorporating information from repeated blood pressure and cholesterol measurements to predict cardiovascular disease (CVD) risk has not been rigorously assessed. We used data on 191,445 adults from the Emerging Risk Factors Collaboration (38 cohorts from 17 countries with data encompassing 1962–2014) with more than 1 million measurements of systolic blood pressure, total cholesterol, and high-density lipoprotein cholesterol. Over a median 12 years of follow-up, 21,170 CVD events occurred. Risk prediction models using cumulative mean values of repeated measurements and summary measures from longitudinal modeling of the repeated measurements were compared with models using measurements from a single time point. Risk discrimination (C-index) and net reclassification were calculated, and changes in C-indices were meta-analyzed across studies. Compared with the single-time-point model, the cumulative means and longitudinal models increased the C-index by 0.0040 (95% confidence interval (CI): 0.0023, 0.0057) and 0.0023 (95% CI: 0.0005, 0.0042), respectively. Reclassification was also improved in both models; compared with the single-time-point model, overall net reclassification improvements were 0.0369 (95% CI: 0.0303, 0.0436) for the cumulative-means model and 0.0177 (95% CI: 0.0110, 0.0243) for the longitudinal model. In conclusion, incorporating repeated measurements of blood pressure and cholesterol into CVD risk prediction models slightly improves risk prediction. Oxford University Press 2017-10-15 2017-06-13 /pmc/articles/PMC5860526/ /pubmed/28549073 http://dx.doi.org/10.1093/aje/kwx149 Text en © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Systematic Reviews, Meta- and Pooled Analyses Paige, Ellie Barrett, Jessica Pennells, Lisa Sweeting, Michael Willeit, Peter Di Angelantonio, Emanuele Gudnason, Vilmundur Nordestgaard, Børge G. Psaty, Bruce M Goldbourt, Uri Best, Lyle G Assmann, Gerd Salonen, Jukka T Nietert, Paul J Verschuren, W. M. Monique Brunner, Eric J Kronmal, Richard A Salomaa, Veikko Bakker, Stephan J L Dagenais, Gilles R Sato, Shinichi Jansson, Jan-Håkan Willeit, Johann Onat, Altan de la Cámara, Agustin Gómez Roussel, Ronan Völzke, Henry Dankner, Rachel Tipping, Robert W Meade, Tom W Donfrancesco, Chiara Kuller, Lewis H Peters, Annette Gallacher, John Kromhout, Daan Iso, Hiroyasu Knuiman, Matthew Casiglia, Edoardo Kavousi, Maryam Palmieri, Luigi Sundström, Johan Davis, Barry R Njølstad, Inger Couper, David Danesh, John Thompson, Simon G Wood, Angela Use of Repeated Blood Pressure and Cholesterol Measurements to Improve Cardiovascular Disease Risk Prediction: An Individual-Participant-Data Meta-Analysis |
title | Use of Repeated Blood Pressure and Cholesterol Measurements to Improve Cardiovascular Disease Risk Prediction: An Individual-Participant-Data Meta-Analysis |
title_full | Use of Repeated Blood Pressure and Cholesterol Measurements to Improve Cardiovascular Disease Risk Prediction: An Individual-Participant-Data Meta-Analysis |
title_fullStr | Use of Repeated Blood Pressure and Cholesterol Measurements to Improve Cardiovascular Disease Risk Prediction: An Individual-Participant-Data Meta-Analysis |
title_full_unstemmed | Use of Repeated Blood Pressure and Cholesterol Measurements to Improve Cardiovascular Disease Risk Prediction: An Individual-Participant-Data Meta-Analysis |
title_short | Use of Repeated Blood Pressure and Cholesterol Measurements to Improve Cardiovascular Disease Risk Prediction: An Individual-Participant-Data Meta-Analysis |
title_sort | use of repeated blood pressure and cholesterol measurements to improve cardiovascular disease risk prediction: an individual-participant-data meta-analysis |
topic | Systematic Reviews, Meta- and Pooled Analyses |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860526/ https://www.ncbi.nlm.nih.gov/pubmed/28549073 http://dx.doi.org/10.1093/aje/kwx149 |
work_keys_str_mv | AT paigeellie useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT barrettjessica useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT pennellslisa useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT sweetingmichael useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT willeitpeter useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT diangelantonioemanuele useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT gudnasonvilmundur useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT nordestgaardbørgeg useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT psatybrucem useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT goldbourturi useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT bestlyleg useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT assmanngerd useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT salonenjukkat useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT nietertpaulj useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT verschurenwmmonique useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT brunnerericj useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT kronmalricharda useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT salomaaveikko useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT bakkerstephanjl useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT dagenaisgillesr useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT satoshinichi useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT janssonjanhakan useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT willeitjohann useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT onataltan useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT delacamaraagustingomez useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT rousselronan useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT volzkehenry useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT danknerrachel useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT tippingrobertw useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT meadetomw useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT donfrancescochiara useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT kullerlewish useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT petersannette useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT gallacherjohn useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT kromhoutdaan useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT isohiroyasu useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT knuimanmatthew useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT casigliaedoardo useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT kavousimaryam useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT palmieriluigi useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT sundstromjohan useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT davisbarryr useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT njølstadinger useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT couperdavid useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT daneshjohn useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT thompsonsimong useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis AT woodangela useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis |