Cargando…

Use of Repeated Blood Pressure and Cholesterol Measurements to Improve Cardiovascular Disease Risk Prediction: An Individual-Participant-Data Meta-Analysis

The added value of incorporating information from repeated blood pressure and cholesterol measurements to predict cardiovascular disease (CVD) risk has not been rigorously assessed. We used data on 191,445 adults from the Emerging Risk Factors Collaboration (38 cohorts from 17 countries with data en...

Descripción completa

Detalles Bibliográficos
Autores principales: Paige, Ellie, Barrett, Jessica, Pennells, Lisa, Sweeting, Michael, Willeit, Peter, Di Angelantonio, Emanuele, Gudnason, Vilmundur, Nordestgaard, Børge G., Psaty, Bruce M, Goldbourt, Uri, Best, Lyle G, Assmann, Gerd, Salonen, Jukka T, Nietert, Paul J, Verschuren, W. M. Monique, Brunner, Eric J, Kronmal, Richard A, Salomaa, Veikko, Bakker, Stephan J L, Dagenais, Gilles R, Sato, Shinichi, Jansson, Jan-Håkan, Willeit, Johann, Onat, Altan, de la Cámara, Agustin Gómez, Roussel, Ronan, Völzke, Henry, Dankner, Rachel, Tipping, Robert W, Meade, Tom W, Donfrancesco, Chiara, Kuller, Lewis H, Peters, Annette, Gallacher, John, Kromhout, Daan, Iso, Hiroyasu, Knuiman, Matthew, Casiglia, Edoardo, Kavousi, Maryam, Palmieri, Luigi, Sundström, Johan, Davis, Barry R, Njølstad, Inger, Couper, David, Danesh, John, Thompson, Simon G, Wood, Angela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860526/
https://www.ncbi.nlm.nih.gov/pubmed/28549073
http://dx.doi.org/10.1093/aje/kwx149
_version_ 1783307978309369856
author Paige, Ellie
Barrett, Jessica
Pennells, Lisa
Sweeting, Michael
Willeit, Peter
Di Angelantonio, Emanuele
Gudnason, Vilmundur
Nordestgaard, Børge G.
Psaty, Bruce M
Goldbourt, Uri
Best, Lyle G
Assmann, Gerd
Salonen, Jukka T
Nietert, Paul J
Verschuren, W. M. Monique
Brunner, Eric J
Kronmal, Richard A
Salomaa, Veikko
Bakker, Stephan J L
Dagenais, Gilles R
Sato, Shinichi
Jansson, Jan-Håkan
Willeit, Johann
Onat, Altan
de la Cámara, Agustin Gómez
Roussel, Ronan
Völzke, Henry
Dankner, Rachel
Tipping, Robert W
Meade, Tom W
Donfrancesco, Chiara
Kuller, Lewis H
Peters, Annette
Gallacher, John
Kromhout, Daan
Iso, Hiroyasu
Knuiman, Matthew
Casiglia, Edoardo
Kavousi, Maryam
Palmieri, Luigi
Sundström, Johan
Davis, Barry R
Njølstad, Inger
Couper, David
Danesh, John
Thompson, Simon G
Wood, Angela
author_facet Paige, Ellie
Barrett, Jessica
Pennells, Lisa
Sweeting, Michael
Willeit, Peter
Di Angelantonio, Emanuele
Gudnason, Vilmundur
Nordestgaard, Børge G.
Psaty, Bruce M
Goldbourt, Uri
Best, Lyle G
Assmann, Gerd
Salonen, Jukka T
Nietert, Paul J
Verschuren, W. M. Monique
Brunner, Eric J
Kronmal, Richard A
Salomaa, Veikko
Bakker, Stephan J L
Dagenais, Gilles R
Sato, Shinichi
Jansson, Jan-Håkan
Willeit, Johann
Onat, Altan
de la Cámara, Agustin Gómez
Roussel, Ronan
Völzke, Henry
Dankner, Rachel
Tipping, Robert W
Meade, Tom W
Donfrancesco, Chiara
Kuller, Lewis H
Peters, Annette
Gallacher, John
Kromhout, Daan
Iso, Hiroyasu
Knuiman, Matthew
Casiglia, Edoardo
Kavousi, Maryam
Palmieri, Luigi
Sundström, Johan
Davis, Barry R
Njølstad, Inger
Couper, David
Danesh, John
Thompson, Simon G
Wood, Angela
author_sort Paige, Ellie
collection PubMed
description The added value of incorporating information from repeated blood pressure and cholesterol measurements to predict cardiovascular disease (CVD) risk has not been rigorously assessed. We used data on 191,445 adults from the Emerging Risk Factors Collaboration (38 cohorts from 17 countries with data encompassing 1962–2014) with more than 1 million measurements of systolic blood pressure, total cholesterol, and high-density lipoprotein cholesterol. Over a median 12 years of follow-up, 21,170 CVD events occurred. Risk prediction models using cumulative mean values of repeated measurements and summary measures from longitudinal modeling of the repeated measurements were compared with models using measurements from a single time point. Risk discrimination (C-index) and net reclassification were calculated, and changes in C-indices were meta-analyzed across studies. Compared with the single-time-point model, the cumulative means and longitudinal models increased the C-index by 0.0040 (95% confidence interval (CI): 0.0023, 0.0057) and 0.0023 (95% CI: 0.0005, 0.0042), respectively. Reclassification was also improved in both models; compared with the single-time-point model, overall net reclassification improvements were 0.0369 (95% CI: 0.0303, 0.0436) for the cumulative-means model and 0.0177 (95% CI: 0.0110, 0.0243) for the longitudinal model. In conclusion, incorporating repeated measurements of blood pressure and cholesterol into CVD risk prediction models slightly improves risk prediction.
format Online
Article
Text
id pubmed-5860526
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-58605262018-03-28 Use of Repeated Blood Pressure and Cholesterol Measurements to Improve Cardiovascular Disease Risk Prediction: An Individual-Participant-Data Meta-Analysis Paige, Ellie Barrett, Jessica Pennells, Lisa Sweeting, Michael Willeit, Peter Di Angelantonio, Emanuele Gudnason, Vilmundur Nordestgaard, Børge G. Psaty, Bruce M Goldbourt, Uri Best, Lyle G Assmann, Gerd Salonen, Jukka T Nietert, Paul J Verschuren, W. M. Monique Brunner, Eric J Kronmal, Richard A Salomaa, Veikko Bakker, Stephan J L Dagenais, Gilles R Sato, Shinichi Jansson, Jan-Håkan Willeit, Johann Onat, Altan de la Cámara, Agustin Gómez Roussel, Ronan Völzke, Henry Dankner, Rachel Tipping, Robert W Meade, Tom W Donfrancesco, Chiara Kuller, Lewis H Peters, Annette Gallacher, John Kromhout, Daan Iso, Hiroyasu Knuiman, Matthew Casiglia, Edoardo Kavousi, Maryam Palmieri, Luigi Sundström, Johan Davis, Barry R Njølstad, Inger Couper, David Danesh, John Thompson, Simon G Wood, Angela Am J Epidemiol Systematic Reviews, Meta- and Pooled Analyses The added value of incorporating information from repeated blood pressure and cholesterol measurements to predict cardiovascular disease (CVD) risk has not been rigorously assessed. We used data on 191,445 adults from the Emerging Risk Factors Collaboration (38 cohorts from 17 countries with data encompassing 1962–2014) with more than 1 million measurements of systolic blood pressure, total cholesterol, and high-density lipoprotein cholesterol. Over a median 12 years of follow-up, 21,170 CVD events occurred. Risk prediction models using cumulative mean values of repeated measurements and summary measures from longitudinal modeling of the repeated measurements were compared with models using measurements from a single time point. Risk discrimination (C-index) and net reclassification were calculated, and changes in C-indices were meta-analyzed across studies. Compared with the single-time-point model, the cumulative means and longitudinal models increased the C-index by 0.0040 (95% confidence interval (CI): 0.0023, 0.0057) and 0.0023 (95% CI: 0.0005, 0.0042), respectively. Reclassification was also improved in both models; compared with the single-time-point model, overall net reclassification improvements were 0.0369 (95% CI: 0.0303, 0.0436) for the cumulative-means model and 0.0177 (95% CI: 0.0110, 0.0243) for the longitudinal model. In conclusion, incorporating repeated measurements of blood pressure and cholesterol into CVD risk prediction models slightly improves risk prediction. Oxford University Press 2017-10-15 2017-06-13 /pmc/articles/PMC5860526/ /pubmed/28549073 http://dx.doi.org/10.1093/aje/kwx149 Text en © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Systematic Reviews, Meta- and Pooled Analyses
Paige, Ellie
Barrett, Jessica
Pennells, Lisa
Sweeting, Michael
Willeit, Peter
Di Angelantonio, Emanuele
Gudnason, Vilmundur
Nordestgaard, Børge G.
Psaty, Bruce M
Goldbourt, Uri
Best, Lyle G
Assmann, Gerd
Salonen, Jukka T
Nietert, Paul J
Verschuren, W. M. Monique
Brunner, Eric J
Kronmal, Richard A
Salomaa, Veikko
Bakker, Stephan J L
Dagenais, Gilles R
Sato, Shinichi
Jansson, Jan-Håkan
Willeit, Johann
Onat, Altan
de la Cámara, Agustin Gómez
Roussel, Ronan
Völzke, Henry
Dankner, Rachel
Tipping, Robert W
Meade, Tom W
Donfrancesco, Chiara
Kuller, Lewis H
Peters, Annette
Gallacher, John
Kromhout, Daan
Iso, Hiroyasu
Knuiman, Matthew
Casiglia, Edoardo
Kavousi, Maryam
Palmieri, Luigi
Sundström, Johan
Davis, Barry R
Njølstad, Inger
Couper, David
Danesh, John
Thompson, Simon G
Wood, Angela
Use of Repeated Blood Pressure and Cholesterol Measurements to Improve Cardiovascular Disease Risk Prediction: An Individual-Participant-Data Meta-Analysis
title Use of Repeated Blood Pressure and Cholesterol Measurements to Improve Cardiovascular Disease Risk Prediction: An Individual-Participant-Data Meta-Analysis
title_full Use of Repeated Blood Pressure and Cholesterol Measurements to Improve Cardiovascular Disease Risk Prediction: An Individual-Participant-Data Meta-Analysis
title_fullStr Use of Repeated Blood Pressure and Cholesterol Measurements to Improve Cardiovascular Disease Risk Prediction: An Individual-Participant-Data Meta-Analysis
title_full_unstemmed Use of Repeated Blood Pressure and Cholesterol Measurements to Improve Cardiovascular Disease Risk Prediction: An Individual-Participant-Data Meta-Analysis
title_short Use of Repeated Blood Pressure and Cholesterol Measurements to Improve Cardiovascular Disease Risk Prediction: An Individual-Participant-Data Meta-Analysis
title_sort use of repeated blood pressure and cholesterol measurements to improve cardiovascular disease risk prediction: an individual-participant-data meta-analysis
topic Systematic Reviews, Meta- and Pooled Analyses
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860526/
https://www.ncbi.nlm.nih.gov/pubmed/28549073
http://dx.doi.org/10.1093/aje/kwx149
work_keys_str_mv AT paigeellie useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT barrettjessica useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT pennellslisa useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT sweetingmichael useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT willeitpeter useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT diangelantonioemanuele useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT gudnasonvilmundur useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT nordestgaardbørgeg useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT psatybrucem useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT goldbourturi useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT bestlyleg useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT assmanngerd useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT salonenjukkat useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT nietertpaulj useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT verschurenwmmonique useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT brunnerericj useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT kronmalricharda useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT salomaaveikko useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT bakkerstephanjl useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT dagenaisgillesr useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT satoshinichi useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT janssonjanhakan useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT willeitjohann useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT onataltan useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT delacamaraagustingomez useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT rousselronan useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT volzkehenry useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT danknerrachel useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT tippingrobertw useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT meadetomw useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT donfrancescochiara useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT kullerlewish useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT petersannette useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT gallacherjohn useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT kromhoutdaan useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT isohiroyasu useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT knuimanmatthew useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT casigliaedoardo useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT kavousimaryam useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT palmieriluigi useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT sundstromjohan useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT davisbarryr useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT njølstadinger useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT couperdavid useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT daneshjohn useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT thompsonsimong useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis
AT woodangela useofrepeatedbloodpressureandcholesterolmeasurementstoimprovecardiovasculardiseaseriskpredictionanindividualparticipantdatametaanalysis