Cargando…
Segway 2.0: Gaussian mixture models and minibatch training
SUMMARY: Segway performs semi-automated genome annotation, discovering joint patterns across multiple genomic signal datasets. We discuss a major new version of Segway and highlight its ability to model data with substantially greater accuracy. Major enhancements in Segway 2.0 include the ability to...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860603/ https://www.ncbi.nlm.nih.gov/pubmed/29028889 http://dx.doi.org/10.1093/bioinformatics/btx603 |
Sumario: | SUMMARY: Segway performs semi-automated genome annotation, discovering joint patterns across multiple genomic signal datasets. We discuss a major new version of Segway and highlight its ability to model data with substantially greater accuracy. Major enhancements in Segway 2.0 include the ability to model data with a mixture of Gaussians, enabling capture of arbitrarily complex signal distributions, and minibatch training, leading to better learned parameters. AVAILABILITY AND IMPLEMENTATION: Segway and its source code are freely available for download at http://segway.hoffmanlab.org. We have made available scripts (https://doi.org/10.5281/zenodo.802939) and datasets (https://doi.org/10.5281/zenodo.802906) for this paper’s analysis. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
---|