Cargando…

PyDREAM: high-dimensional parameter inference for biological models in python

SUMMARY: Biological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration against experimental data. Markov chain Monte Carlo (MCMC) methods are suitable to estimate multivariate posterior model parameter distributions, bu...

Descripción completa

Detalles Bibliográficos
Autores principales: Shockley, Erin M, Vrugt, Jasper A, Lopez, Carlos F
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860607/
https://www.ncbi.nlm.nih.gov/pubmed/29028896
http://dx.doi.org/10.1093/bioinformatics/btx626
_version_ 1783307981610287104
author Shockley, Erin M
Vrugt, Jasper A
Lopez, Carlos F
author_facet Shockley, Erin M
Vrugt, Jasper A
Lopez, Carlos F
author_sort Shockley, Erin M
collection PubMed
description SUMMARY: Biological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration against experimental data. Markov chain Monte Carlo (MCMC) methods are suitable to estimate multivariate posterior model parameter distributions, but these methods may exhibit slow or premature convergence in high-dimensional search spaces. Here, we present PyDREAM, a Python implementation of the (Multiple-Try) Differential Evolution Adaptive Metropolis [DREAM((ZS))] algorithm developed by Vrugt and ter Braak (2008) and Laloy and Vrugt (2012). PyDREAM achieves excellent performance for complex, parameter-rich models and takes full advantage of distributed computing resources, facilitating parameter inference and uncertainty estimation of CPU-intensive biological models. AVAILABILITY AND IMPLEMENTATION: PyDREAM is freely available under the GNU GPLv3 license from the Lopez lab GitHub repository at http://github.com/LoLab-VU/PyDREAM. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
format Online
Article
Text
id pubmed-5860607
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-58606072018-03-28 PyDREAM: high-dimensional parameter inference for biological models in python Shockley, Erin M Vrugt, Jasper A Lopez, Carlos F Bioinformatics Applications Notes SUMMARY: Biological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration against experimental data. Markov chain Monte Carlo (MCMC) methods are suitable to estimate multivariate posterior model parameter distributions, but these methods may exhibit slow or premature convergence in high-dimensional search spaces. Here, we present PyDREAM, a Python implementation of the (Multiple-Try) Differential Evolution Adaptive Metropolis [DREAM((ZS))] algorithm developed by Vrugt and ter Braak (2008) and Laloy and Vrugt (2012). PyDREAM achieves excellent performance for complex, parameter-rich models and takes full advantage of distributed computing resources, facilitating parameter inference and uncertainty estimation of CPU-intensive biological models. AVAILABILITY AND IMPLEMENTATION: PyDREAM is freely available under the GNU GPLv3 license from the Lopez lab GitHub repository at http://github.com/LoLab-VU/PyDREAM. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2018-02-15 2017-10-04 /pmc/articles/PMC5860607/ /pubmed/29028896 http://dx.doi.org/10.1093/bioinformatics/btx626 Text en © The Author 2017. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Applications Notes
Shockley, Erin M
Vrugt, Jasper A
Lopez, Carlos F
PyDREAM: high-dimensional parameter inference for biological models in python
title PyDREAM: high-dimensional parameter inference for biological models in python
title_full PyDREAM: high-dimensional parameter inference for biological models in python
title_fullStr PyDREAM: high-dimensional parameter inference for biological models in python
title_full_unstemmed PyDREAM: high-dimensional parameter inference for biological models in python
title_short PyDREAM: high-dimensional parameter inference for biological models in python
title_sort pydream: high-dimensional parameter inference for biological models in python
topic Applications Notes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860607/
https://www.ncbi.nlm.nih.gov/pubmed/29028896
http://dx.doi.org/10.1093/bioinformatics/btx626
work_keys_str_mv AT shockleyerinm pydreamhighdimensionalparameterinferenceforbiologicalmodelsinpython
AT vrugtjaspera pydreamhighdimensionalparameterinferenceforbiologicalmodelsinpython
AT lopezcarlosf pydreamhighdimensionalparameterinferenceforbiologicalmodelsinpython