Cargando…
Beyond similarity assessment: selecting the optimal model for sequence alignment via the Factorized Asymptotic Bayesian algorithm
MOTIVATION: Pair Hidden Markov Models (PHMMs) are probabilistic models used for pairwise sequence alignment, a quintessential problem in bioinformatics. PHMMs include three types of hidden states: match, insertion and deletion. Most previous studies have used one or two hidden states for each PHMM s...
Autores principales: | Takeda, Taikai, Hamada, Michiaki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860613/ https://www.ncbi.nlm.nih.gov/pubmed/29040374 http://dx.doi.org/10.1093/bioinformatics/btx643 |
Ejemplares similares
-
Optimal scaling of random walk Metropolis algorithms using Bayesian large-sample asymptotics
por: Schmon, Sebastian M., et al.
Publicado: (2022) -
A Pairwise Alignment Algorithm for Long Sequences of High Similarity
por: Lee, Chien-Tai, et al.
Publicado: (2017) -
Improving the accuracy of predicting secondary structure for aligned RNA sequences
por: Hamada, Michiaki, et al.
Publicado: (2011) -
Self-similar asymptotic solutions of the Whitham equations
por: Grava, T
Publicado: (1998) -
Asymptotic freedom beyond the leading order
por: Buras, Andrzej J, et al.
Publicado: (1977)